CHR2C CHR2C NetThe Proposed Method模型结构整体分为两部分:CHR和HR2CCHR(级联的热力图回归): 输入:原始输入图像或者上一阶段输出的特征图 第一阶段:学习刚性几何变换,粗略估计可见landmark的位置 第二阶端:基于可见的邻居信息学习遮挡landmark的位置。 在两个阶段的中间层添加特征图丢失层,以概率f将某个标记点对应的热力图置0,这样对该标记点热力图的学习只能依靠相邻的热力图。采用交叉熵损失来学习热力图[外链图片转存失败,源站