传送门
SOL
点分树模板
细节看注释吧
多写几遍应该就好了
CODE
#include<bits/stdc++.h>
using namespace std;
#define sf scanf
#define pf printf
const int RLEN=1<<18|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return res;
}
const int N=1e5+10;
#define lb(x) (x&(-x))
struct vec{
vector <int> v;int n;
inline void init(){
v.assign(n+10,0);
}
inline void update(int p,int k){
//p的距离可以是0,所以要向左唯一一位
++p;
for(;p<=n;p+=lb(p))v[p]+=k;
}
inline int query(int p,int res=0){
//两点间距离最长是 n-1 所以 (n-1)+1 刚好到 n的边界
//如果负数for循环都没有
//如果大于n给n就可以了
p=min(p+1,n);
for(;p>=1;p-=lb(p))res+=v[p];
return res;
}
inline void write(){
for(int i=1;i<=n;++i)cout<<query(i-1)<<' ';puts("");
}
}f1[N],f2[N];
int n,m,vis[N],val[N],adj[N],nxt[N<<1],to[N<<1],cnt,dep[N],siz[N],son[N],fa[N],maxn,rt;
int ecnt,d[N];
namespace ST{
//st表加欧拉序 o(1)求两点间距离
int dis[N],dfn,pos[N],st[22][N<<2],lg[N<<2];
void dfs(int u,int f){
st[0][++dfn]=dis[u],pos[u]=dfn;
for(int e=adj[u];e;e=nxt[e]){
int v=to[e];
if(v==f)continue;
dis[v]=dis[u]+1;
dfs(v,u);
st[0][++dfn]=dis[u];
}
}
inline void init(){
dfs(1,0);lg[0]=-1;
for(int i=1;i<=dfn;++i)lg[i]=lg[i>>1]+1;
for(int i=1;(1<<i)<=dfn;++i){
for(int j=1;j+(1<<i)-1<=dfn;++j){
st[i][j]=min(st[i-1][j],st[i-1][j+(1<<i-1)]);
}
}
}
inline int dist(int u,int v){
int x=pos[u],y=pos[v];
if(x>y)swap(x,y);
int t=lg[y-x+1];
return dis[u]+dis[v]-2*min(st[t][x],st[t][y-(1<<t)+1]);
}
}
using namespace ST;
inline void addedge(int u,int v){
nxt[++cnt]=adj[u],adj[u]=cnt,to[cnt]=v;
}
void getrt(int u,int f){
siz[u]=1,son[u]=0;
for(int e=adj[u];e;e=nxt[e]){
int v=to[e];
if(v^f&&!vis[v]){
getrt(v,u),siz[u]+=siz[v];
son[u]=max(son[u],siz[v]);
}
}
son[u]=max(son[u],maxn-siz[u]);
if(son[u]<son[rt])rt=u;
}
void getdis(int u,int f){
d[dep[u]]+=val[u],ecnt=max(ecnt,dep[u]);
for(int e=adj[u];e;e=nxt[e]){
int v=to[e];
if(!vis[v]&&v^f){
dep[v]=dep[u]+1;
getdis(v,u);
}
}
}
inline void calc(vec &tr){
tr.n=ecnt+1,tr.init();
for(int i=0;i<=ecnt;++i){
tr.update(i,d[i]),d[i]=0;
}
ecnt=0;
}
void solve(int u){
//先把点分树预处理出来
vis[u]=1;
dep[u]=0;getdis(u,0);
calc(f1[u]);
for(int e=adj[u];e;e=nxt[e]){
int v=to[e];
if(vis[v])continue;
son[0]=maxn=siz[v];
getrt(v,rt=0),fa[rt]=u,dep[v]=1,getdis(v,0);
//这里getdis是从v出发(取决于计算贡献的方式)
//但是值是放在分治中心 (rt)的树状数组里面
calc(f2[rt]),dep[v]=0;
solve(rt);
}
}
//从下往上,把相关联的分治中心更新或者询问即可
inline void update(int u,int k){
for(int i=u;i;i=fa[i]){
f1[i].update(dist(i,u),k);
}
// 这里是把 修改的点和 当前中心点的路径的下标作修改
for(int i=u;fa[i];i=fa[i]){
f2[i].update(dist(u,fa[i]),k);
}
}
inline int query(int u,int k){
int res=0;
for(int i=u;i;i=fa[i]){
res+=f1[i].query(k-dist(i,u));
}
for(int i=u;fa[i];i=fa[i]){
res-=f2[i].query(k-dist(fa[i],u));
}
return res;
}
int last;
signed main(){
n=read();m=read();
for(int i=1;i<=n;++i)val[i]=read();
for(int i=1;i<n;++i){
int u=read(),v=read();
addedge(u,v),addedge(v,u);
}
init();
maxn=son[0]=n;
getrt(1,rt=0),solve(rt);
while(m--){
int op=read(),u=read()^last,k=read()^last;
if(!op){
cout<<(last=query(u,k))<<'\n';
}
else update(u,k-val[u]),val[u]=k;
}
return 0;
}

博客分享了点分树模板代码,提到细节可看注释,建议多写几遍来掌握。
292

被折叠的 条评论
为什么被折叠?



