Rec-Models
更多细节参考项目:https://github.com/JackHCC/Rec-Models
https://github.com/JackHCC/Rec-Models

📝 Summary of recommendation, advertising and search models.
Recall
Papers
Ranking(CTR|CVR)
Papers
Datasets
Reranking
Papers
| Paper | Resource | Others |
|---|---|---|
| [IJCAJ2018, Alibaba]. Globally Optimized Mutual Influence Aware Ranking in E-Commerce Search | Code | |
| [SIGIR2018, Qingyao Ai]. Learning a Deep Listwise Context Model for Ranking Refinement | Code | |
| [RecSys2019, Alibaba]. Personalized Re-ranking for Recommendation | Code | |
| [CIKM2020, Alibaba]. EdgeRec-Recommender System on Edge in Mobile Taobao | Code | |
| [Artix2021, Alibaba]. Revisit Recommender System in the Permutation Prospective | Code |
Blogs
Calibration
Papers
| Paper | Resource | Others |
|---|---|---|
| (KDD2020, Alibaba). Calibrating User Response Predictions in Online Advertising | Code | |
| (WWW2020, Tencent). A Simple and Empirically Strong Method for Reliable Probabilistic Predictions | Code | |
| (WWW2022, Alibaba). MBCT Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration | Code |
这篇博客汇总了推荐系统、广告和搜索模型的最新研究,包括序列深度匹配模型、联合优化树型索引与深度模型、下一代查询广告匹配模型等。同时,涵盖了CTR/CVR排名模型,如Wide&Deep、DeepFM、xDeepFM等,并探讨了重排序、校准和竞价策略在实际系统中的应用。此外,还提供了多个开源资源链接,便于读者深入学习和实践。
833

被折叠的 条评论
为什么被折叠?



