NLP:自然语言处理宝典
文章平均质量分 87
JackHCC
CV理论家
展开
-
利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现
利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现【The word segmentation task is realized by using traditional methods (n-gram, HMM, etc.), neural network methods (CNN, LSTM, etc.) and pre training methods (Bert, etc.)】...原创 2022-06-21 23:36:19 · 633 阅读 · 0 评论 -
开箱即用!中文关键词抽取(Keyphrase Extraction),基于LDA与PageRank(TextRank, TPR, Salience Rank, Single TPR)
中文关键词抽取,基于LDA与PageRank(TextRank, TPR, Salience Rank, Single TPR)原创 2022-06-13 12:20:41 · 2018 阅读 · 5 评论 -
Pytorch实现中文文本分类任务(Bert,ERNIE,TextCNN,TextRNN,FastText,TextRCNN,BiLSTM_Attention, DPCNN, Transformer)
Github项目地址:https://github.com/JackHCC/Chinese-Text-Classification-PyTorch中文文本分类,基于pytorch,开箱即用。神经网络模型:TextCNN,TextRNN,FastText,TextRCNN,BiLSTM_Attention, DPCNN, Transformer预训练模型:Bert,ERNIE模型介绍、数据流动过程:参考数据以字为单位输入模型,预训练词向量使用 搜狗新闻 Word+Character 300d,点这里下载参考:原创 2022-06-10 21:40:14 · 3906 阅读 · 15 评论 -
Transformer常见问题与回答总结
Q&ATransformer为何使用多头注意力机制?(为什么不使用一个头)多头保证了transformer可以注意到不同子空间的信息,捕捉到更加丰富的特征信息。可以类比CNN中同时使用多个滤波器的作用,直观上讲,多头的注意力有助于网络捕捉到更丰富的特征/信息。参考:https://www.zhihu.com/question/341222779Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘? (注意和第一个问题的区别)使用Q/K/原创 2022-04-10 11:42:45 · 5144 阅读 · 0 评论
分享