- 博客(8)
- 收藏
- 关注
原创 【数值分析】分别使用复合梯形公式和复合辛普森公式计算如下积分(python)
分别使用复合梯形公式和复合辛普森公式计算如下积分:∫262x4+x2dx \int_{2}^{6} \frac{2x}{4+x^2}dx\,∫264+x22xdx并于该积分的准确值进行比较。注意,采用复合梯形公式和复合辛普森公式时,所使用的等分步长为h=0.5。以下是代码,用python实现:fx1 = []fx2 = []sx = []sx2 = []# 计算f(x)值 x1为xk的值 x2为x_(k+1/2)for x1 in (2, 2.5, 3, 3.5, 4, 4.5,
2021-11-16 22:37:00 7346 2
原创 【数值分析】python实现用四阶经典龙格-库塔方法解决问题(2)
# 用四阶经典龙格-库塔方法解决问题import numpy as npdef f(x, y): # 原题目 return x + ydef RK(x_0, y_0, h): # 构造R-K公式 yn = y_0 x = x_0 for n in range(1, 11): k1 = f(x, yn) k2 = x + h / 2 + yn + (h / 2) * k1 k3 = x + h / 2 + yn + (
2021-11-02 22:53:53 302
原创 【数值分析】python实现用四阶经典龙格-库塔方法解决问题(1)
# 用四阶经典龙格-库塔方法解决问题import numpy as npdef f(x, y): # 原题目 return (3 * y) / (1 + x)def RK(x_0, y_0, h): # 构造R-K公式 yn = y_0 x = x_0 for n in range(1, 11): k1 = f(x, yn) k2 = f((x + h / 2), (yn + h / 2 * k1)) k3 = f(
2021-11-02 22:51:32 804
原创 【数值分析】python实现用梯度方法求解初值问题
# 用梯度方法求解初值问题import numpy as npdef f(x, y): # 原题目 return x ** 2 + x - ydef f_1(x): # 准确值方程 return x ** 2 - x + 1 - np.exp(-x) def Tidu(x_0, y_0, h, f_1): # 构造梯度公式 yn = y_0 xn = x_0 for n in range(1, 11): x = xn + h
2021-11-02 22:49:38 363
原创 【数值分析】python实现改进的EULER方法求解初值问题
# 用改进的EULER方法求解初值问题import numpy as npdef f(x, y): # 原题目 return x ** 2 + x - ydef f_1(x): # 准确值方程 return x ** 2 - x + 1 - np.exp(-x)def Oula(x_0, y_0, h, f, f_1): # 构造公式 yn = y_0 xn = x_0 for n in range(1, 11): x = xn +
2021-11-02 22:47:19 1420 1
原创 练习House Password (python) 正则表达式
We have prepared a set of Editor’s Choice Solutions. You will see them first after you solve the mission. In order to see all other solutions you should change the filter. Stephan and Sophia forget ...
2018-08-27 20:59:11 269
原创 1002 写出这个数 python
1002 写出这个数(20 分) 读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字。 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值。这里保证 n 小于 10 100 。 输出格式: 在一行内输出 n 的各位数字之和的每一位,拼音数字间有 1 空格,但一行中最后一个拼音数字后没有空格。 输入样例: 12345678909876543...
2018-08-27 20:27:16 269
原创 1001 害死人不偿命的(3n+1)猜想 python
1001 害死人不偿命的(3n+1)猜想(15 分) 卡拉兹(Callatz)猜想: 对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n...
2018-08-27 20:23:53 232
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人