线性代数第一章第一课: 二阶三阶行列式

二阶行列式

\begin{cases} 3x + 4y = 5 \\ 7x + 9y = 11 \end{cases}

消元法,消掉y,则 x = \frac{5 \times 9 - 11 \times 4}{3 \times 9 - 7 \times 4} 

消元法,消掉x,则  y = \frac{3 \times 11 - 5 \times 7}{3 \times 9 - 7 \times 4} 

推导过程,以x为例: 

一个等式左右两边同时乘以9

3x * 9 + 4y * 9 = 5 * 9 

第二个等式两边同时乘以4

5x * 4 + 7y * 4 = 11 *4

两个等式相减

(3*9 - 5*4)x =5 * 9 - 11 * 4

x等于:

 x = \frac{5*9-11*4}{3*9-7*4}

依据x和y的值引出一个新的计算符号,行列式

x = \frac{ \begin{vmatrix} 5 & 4 \\ 11 & 9 \end{vmatrix} }{ \begin{vmatrix} 3 & 4 \\ 7 & 9 \end{vmatrix} }  ,此时x结果为对角线相乘

  y = \frac{ \begin{vmatrix} 3 & 5 \\ 7 & 11 \end{vmatrix} }{ \begin{vmatrix} 3 & 4 \\ 7 & 9 \end{vmatrix} }  ,y同理

这样的符号把他称作行列式(此处为二阶行列式),二阶行列计算规则如下

\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} 

使用克莱姆法则,将二元线性方程组快速替换为,行列式

\begin{cases} 2x + 3y = 1 \\ 3x + 4y = -2 \end{cases} 

分母为x和y的系数,x的分子为等式右边为结果的第一列,第二列为分母,则x为 x = \frac{ \begin{vmatrix} 1 & 3 \\ -2 & 4 \end{vmatrix} }{ \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} }

分母为x和y的系数,y的分子为等式右边为结果的第一列,第二列为分母,则x为 y = \frac{\begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix}}

三阶行列式

三行三列,表示一个数,计算结果如下

$ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} $

示例:

D = \begin{vmatrix} 1 & 1 & -2 \\ 5 & -2 & 7 \\ 2 & -5 & 4 \end{vmatrix}

D = 1 \times (-2) \times 4 + 1 \times 7 \times 2 + (-2) \times 5 \times (-5) - (-2) \times (-2) \times 2 - 1 \times 5 \times 4 - 1 \times 7 \times (-5)

特殊的三阶行列式:

1. 上三角行列式,计算结果为

\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}

2. 下三角行列式,计算结果为

\begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}

3. 对角行列式,计算结果为

\begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}

  内容来源-B站宋浩老师

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值