python对肌电信号进行简单的手势识别(四个动作分别存储,没有分类,只是活动段检测)

该博客介绍了一个使用Python进行肌电信号(EMG)处理和手势识别的案例。通过对前臂四块肌肉的肌电信号数据进行读取、预处理、平均值计算、移动窗口平均以及阈值判断,识别四种不同的手势:握拳、张开、向右和向左。通过XGBoost训练,对测试样本实现了100%的分类准确率。
摘要由CSDN通过智能技术生成

python对肌电信号进行简单的手势识别

采集前臂四块不同肌肉的表面肌电信号
做了四个动作,每个动作重复20次,每个动作放在单一的excel中

#加载相关模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt 
#读取数据
data1=pd.read_excel('wq20.xlsx',sheetname=1)
data2=pd.read_excel('zs20.xlsx',sheetname=1)
data3=pd.read_excel('n20.xlsx',sheetname=1)
data4=pd.read_excel('w20.xlsx',sheetname=1)
data1.columns=['ch1','ch2','ch3','ch4']
data2.columns=['ch1','ch2','ch3','ch4']
data3.columns=['ch1','ch2','ch3','ch4']
data4.columns=['ch1','ch2','ch3','ch4']
names=locals()
for i in range(1,5):
    plt.figure()
    plt.plot(names['data%s'%i])

names[‘data%s’%i] 是快速填充函数

20次握拳:
在这里插入图片描述动作识别:
将四通道的肌肉电信号汇总求其单次动作(20次动作中的一次)的绝对值平均值,利用移动窗口法,取若干连续时间序列对应的信号强度求局域平均,若其后若干点的均值都超过一定阈值,则视为一个动作开始,反之若其后若干点的局域均值都小于阈值,则视为一个动作结束

四通道的肌肉电信号汇总求其单次动作(20次动作中的一次)的绝对值平均值:

def get_mean_semg(data):
    mean_semg=[]         #ch1-ch4,每四列取一个均值存储到mean_semg中
    for i in range(len(data)-1):
        mean_semg.append((data.ch1[i]+data.ch2[i]+data.ch3[i]+data.ch4[i])/4)
    return mean_semg


for i in range(1,5):  #对四个不同的data[i]分别执行get_mean_semg 求均值函数
    names['mean_semg_%s'%i]=get_mean_semg(names['data%s'%i])  
    plt.figure()
    plt.plot(names['mean_semg_%s'%i])
    plt.ylim(0,5)
    plt.savefig('a%s'%i,dpi=400)

求完平均值后,握拳采用平均值绘出
在这里插入图片描述
动作识别:

def get_move_window(mean_semg):  #输入量为存储了每行(ch1-ch4)/4的数组
    mean_semg_arr=np.array(mean_semg)  #生成了len(mean_semg)长度的数组
    return pd.rolling_mean(mean_semg_arr,window=800)   #再移动窗取800点求平均值,向前取800个值
    
def get_break(data,i,thre,windowlenth):  #定义阀值,定义动作态
    for i in range(i,i+windowlenth):
        if data[i]<thre:
            return 0
    return 1

for i in range(1,5):
    names['move_averge_%s'%i]=get_move_window(names['mean_semg_%s'%i]) #将data[i]取前800电平均值
    names['sta_%s'%i]=[]
    names['end_%s'%i]=[]
    thre=1.1
    windowlenth=800
    for j in range(len(names['move_averge_%s'%i])-1):
        if get_break(names['move_averge_%s'%i],j,thre,windowlenth)==0 and get_break(names['move_averge_%s'%i],j+1,thre,windowlenth)==1:
            names['sta_%s'%i].append(j)  #在 sta中增加 move_averge_i 中所对应的索引号
        if get_break(names['move_averge_%s'%i],j,thre,windowlenth)==1 and get_break(names['move_averge_%s'%i],j+1,thre,windowlenth)==0:
            names['end_%s'%i].append(j)  #在 end中增加 move_averge_i 中所对应的索引号



知识补充例子:
有csv导入的DataFrame,如下。对其进行rolling_count 计算各个窗口中非NA观测值的数量,仅取data1 和data2特征
在这里插入图片描述

pd.rolling_count(df[['data1','data2']],window = 3)  

在这里插入图片描述

pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

获取平均值起始点,并将对应时间点作用于原始信号上,对四通道信号进行行动段提取,并将长度较小的部分过滤,视为噪音

for i in range(1,5):              #对外层data1-data4
    names['period_%s'%i]=[]
    names['sta_filt_%s'%i]=[]
    names['end_filt_%s'%i]=[]
    for j in range(len(names['sta_%s'%i])):  #对单个sta_[i]数组操作
        names['period_%s'%i].append(names['end_%s'%i][j]-names['sta_%s'%i][j])  #将动作段数据储存至period[i] 列表中,存储的是end-sta 索引号的差值
    for k in range(len(names['period_%s'%i])): #在已经分好段的动作中操作,准备滤除短信号
        if names['period_%s'%i][k]>5000:   #长度大于5000保留
            names['sta_filt_%s'%i].append(names['sta_%s'%i][k])
            names['end_filt_%s'%i].append(names['end_%s'%i][k])
 #  names['data1_cut%s'%i] 中存了20 段数组,代表20个动作
for i in range(1,len(sta_filt_1)+1):
    names['data1_cut%s'%i]=data1[sta_filt_1[i-1]:end_filt_1[i-1]]  #sta_filt中存储的是索引号
for i in range(1,len(sta_filt_2)+1):
    names['data2_cut%s'%i]=data2[sta_filt_2[i-1]:end_filt_2[i-1]]
for i in range(1,len(sta_filt_3)+1):
    names['data3_cut%s'%i]=data3[sta_filt_3[i-1]:end_filt_3[i-1]]
for i in range(1,len(sta_filt_4)+1):
    names['data4_cut%s'%i]=data4[sta_filt_4[i-1]:end_filt_4[i-1]]
# datai_cuti 中存储的为待保留的数组,一个动作应有20个 data_cut
    
   

plt.figure(figsize=(50,3))
for i in range(1,21):
    plt.subplot2grid((1,20),(0,i-1),colspan=1).plot(names['data1_cut%s'%i])
    plt.ylim(0,10)
    plt.title('fist')
plt.figure(figsize=(50,3))
for i in range(1,22):
    plt.subplot2grid((1,21),(0,i-1),colspan=1).plot(names['data2_cut%s'%i])
    plt.ylim(0,10)
    plt.title('open')
plt.figure(figsize=(50,3))
for i in range(1,25):
    plt.subplot2grid((1,24),(0,i-1),colspan=1).plot(names['data3_cut%s'%i])
    plt.ylim(0,10)
    plt.title('toright')
plt.figure(figsize=(50,3))
for i in range(1,21):
    plt.subplot2grid((1,20),(0,i-1),colspan=1).plot(names['data4_cut%s'%i])
    plt.ylim(0,10)
    plt.title('toleft')

fist:握拳 对各通道行动段求区间的平均值MAV,可以看出对于不同的动作,MAV值区别明显,可以作为特征向量对信号进行特征提取

""""
# fist、open、toright、toleft分别操作。对每类动作中的20个动作,每个通道取一次均值,即ch1-ch4分别取均值存取 mav_ 中
|DataFrame| ch1 | ch2 | ch3 | ch4 |
|d_cut_1  | mean|mean |mean |mean |    每个cut中的chi列平均值
|d_cut_2  | mean|mean |mean |mean |
......       .....          ......
|d_cut_20 | mean|mean |mean |mean |
""""
# 首先建立一个DataFrame数据,以存放mean
mav_fist=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(20)])
for i in range(1,21):   
    mav_fist.loc[i-1,'ch1']=names['data1_cut%s'%i].ch1.mean() #取平均值后,存入mav_fist[],'ch1'列
    mav_fist.loc[i-1,'ch2']=names['data1_cut%s'%i].ch2.mean()
    mav_fist.loc[i-1,'ch3']=names['data1_cut%s'%i].ch3.mean()
    mav_fist.loc[i-1,'ch4']=names['data1_cut%s'%i].ch4.mean()
mav_open=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(21)])
for i in range(1,22):
    mav_open.loc[i-1,'ch1']=names['data2_cut%s'%i].ch1.mean()
    mav_open.loc[i-1,'ch2']=names['data2_cut%s'%i].ch2.mean()
    mav_open.loc[i-1,'ch3']=names['data2_cut%s'%i].ch3.mean()
    mav_open.loc[i-1,'ch4']=names['data2_cut%s'%i].ch4.mean()
mav_toright=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(24)])
for i in range(1,25):
    mav_toright.loc[i-1,'ch1']=names['data3_cut%s'%i].ch1.mean()
    mav_toright.loc[i-1,'ch2']=names['data3_cut%s'%i].ch2.mean()
    mav_toright.loc[i-1,'ch3']=names['data3_cut%s'%i].ch3.mean()
    mav_toright.loc[i-1,'ch4']=names['data3_cut%s'%i].ch4.mean()
mav_toleft=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(20)])
for i in range(1,21):
    mav_toleft.loc[i-1,'ch1']=names['data4_cut%s'%i].ch1.mean()
    mav_toleft.loc[i-1,'ch2']=names['data4_cut%s'%i].ch2.mean()
    mav_toleft.loc[i-1,'ch3']=names['data4_cut%s'%i].ch3.mean()
    mav_toleft.loc[i-1,'ch4']=names['data4_cut%s'%i].ch4.mean()

知识补充:
对于DataFrame :
在这里插入图片描述
loc是根据index来索引,iloc是根据行号来索引,行号从0开始,逐次加1。
print(table.iloc[0])
print(table.loc[‘a’])

绘制四个动作的散点图: 用来说明每个动作中特征分布情况

plt.figure(figsize=(20,5))
mav_fist_ax=plt.subplot2grid((1,4),(0,0),colspan=1)
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch1,c='r')
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch2,c='g')
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch3,c='b')
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch4,c='y')
mav_open_ax=plt.subplot2grid((1,4),(0,1),colspan=1)
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch1,c='r')
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch2,c='g')
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch3,c='b')
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch4,c='y')
mav_toright_ax=plt.subplot2grid((1,4),(0,2),colspan=1)
mav_toright_ax.scatter(x=np.arange(24),y=mav_toright.ch1,c='r')
mav_toright_ax.scatter(x=np.arange(24),y=mav_toright.ch2,c='g')
mav_toright_ax.scatter(x=np.arange(24),y=mav_toright.ch3,c='b')
mav_toright_ax.scatter(x=np.arange(24),y=mav_toright.ch4,c='y')
mav_toleft_ax=plt.subplot2grid((1,4),(0,3),colspan=1)
mav_toleft_ax.scatter(x=np.arange(20),y=mav_toleft.ch1,c='r')
mav_toleft_ax.scatter(x=np.arange(20),y=mav_toleft.ch2,c='g')
mav_toleft_ax.scatter(x=np.arange(20),y=mav_toleft.ch3,c='b')
mav_toleft_ax.scatter(x=np.arange(20),y=mav_toleft.ch4,c='y')

在这里插入图片描述
然后对四个不同的手势进行数字命名,通过xgboost进行训练分析,16个测试样的预测结果正确率为100%


mav_fist['action']=0
mav_open['action']=1
mav_toright['action']=2
mav_toleft['action']=3
sumup=mav_fist.append([mav_open,mav_toright,mav_toleft],ignore_index=True)
y=sumup.action

x=sumup.drop(['action'],axis=1)
from sklearn.model_selection import train_test_split

import xgboost as xgb
train_x,test_x,train_y,test_y=train_test_split(x.as_matrix(),y.as_matrix(),test_size=0.2)
xg_train=xgb.DMatrix(train_x,label=train_y)
xg_test=xgb.DMatrix(test_x,label=test_y)
param = {}

param['objective'] ='multi:softmax'

param['eta']=0.1
param['max_depth']=6
param['silent']=1
param['nthread']=4
param['num_class']=4
watchlist = [(xg_train, 'train'), (xg_test, 'test')]
num_round=5
bst = xgb.train(param, xg_train, num_round, watchlist)
pred = bst.predict(xg_test)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值