人工智能与大数据

1.关系

现在,没有什么流行词比大数据和人工智能更常见了。无数的分析家向我们保证,将从根本上重塑我们的日常生活。事实上,对于围绕人工智能和大数据的所有讨论,很少有人提到这两种新兴技术的融合,尤其是在解释人工智能为什么迫切需要大数据以取得成功的时候。

这是人工智能和大数据操作之间的秘密联系,以及这两种新兴趋势将如何主导21世纪。
在这里插入图片描述
没有大数据就不能拥有智能机器
在开始描述人工智能和大数据如何一起工作之前,先来介绍一下基础知识,并详细描述每一个术语的含义。在当今世界,人工智能和机器学习本质上是同步的,这两个术语实际上都是指智能机器,它们可以随着时间的推移而学习,只要它们能够访问大量的数据,收集有用的知识。大数据分析指的是任何依靠利用计算机来处理大量信息的操作,特别是当涉及到分析全行业数据以从中得出有用的结论时。

上面已经介绍了基础知识,接下来就解释这两种技术之间存在的相互关系。如果你对人工智能有所了解,那么应该清楚的是,这些智能机器需要大量的数据才能有效;如果没有强大的数据基础,人工智能就不可能存在,这就是为什么今天那些率先开发它的公司将数百万投入到他们的数据操作中,以促进未来的突破。

如今的领先企业,无论是科技巨头还是传统企业,都认为人工智能具有不可思议的破坏性,这是有充分理由的。最近,有88%的受访高管表示,他们希望AI在未来几年对他们的行业产生严重的颠覆性影响,例如,说明全国各地和世界各地的商界领袖都开始关注机器学习解决方案,这是他们应该得到的关注。然而,在这场人工智能革命能够颠覆我们如何全面开展业务之前,它需要一场大数据革命来为它的到来铺平道路。

越来越多的人越来越容易看到大数据是趋势,而不是相反。简单地说,如果这些智能机器不能依靠数据分析操作来获取大量的信息,他们就不可能希望在很长一段时间内提高自己,这本质上是基于AI的业务解决方案的最大卖点。如果你想为即将到来的人工智能革命做好准备,那么,你至少需要花费大量的时间在一个大数据池上,就像你在机器学习解决方案上所做的那样。

现在的人类正在产生令人惊讶的数据
为了让事情更有意义,让我们来看看人类在其(相对短暂的)存在中创造了多少数据。数个世纪以来,人类产生的数据相对较少,大多数信息都写在易碎的书里,或者刻在石头表面上。随着计算机时代的诞生,一切都变了。现在,人类的数据量是全球每年的两倍。例如,美国科学家声称,人类在2016年就产生了和它每年一样多的新数据。

随着这一令人惊叹的数据革命正在进行,很容易看到人工智能的崛起之路正在缓慢而稳步地进入今天的市场。随着越来越多的公司在自己的数据分析业务中投入大量资金,预计他们也会很快意识到人工智能对他们的业务运作的潜在影响,并在不久的将来采用机器学习解决方案。人工智能和大数据是企业刚刚开始理解的引人注目的趋势,但很快它们将成为21世纪任何商业战略的必要组成部分。

随着数据挖掘技术的发展变得越来越复杂,大型数据分析业务在全球市场上变得越来越普遍,预计将会出现一种以电子方式驱动的解决方案,很快就会破坏我们对当代经济的所有了解。然而,人工智能不仅会带来经济后果。从用户在日常生活中如何享受网络,到各国如何组装他们的武装力量,一切都将被迅速接管人工智能所颠覆。

2.区别

人工智能和大数据是人们耳熟能详的流行术语,但也可能会有一些混淆。人工智能和大数据有什么相似之处和不同之处?它们有什么共同点吗?它们是否相似?能进行有效的比较吗?嵌入式
在这里插入图片描述
有人认为将人工智能与大数据结合在一起是一个很自然的错误,其部分原因是两者实际上是一致的。但它们是完成相同任务的不同工具。但首先要做的事是先弄清二者的定义。很多人并不知道这些。

人工智能与大数据一个主要的区别是大数据是需要在数据变得有用之前进行清理、结构化和集成的原始输入,而人工智能则是输出,即处理数据产生的智能。这使得两者有着本质上的不同。

人工智能是一种计算形式,它允许机器执行认知功能,例如对输入起作用或作出反应,类似于人类的做法。传统的计算应用程序也会对数据做出反应,但反应和响应都必须采用人工编码。如果出现任何类型的差错,就像意外的结果一样,应用程序无法做出反应。而人工智能系统不断改变它们的行为,以适应调查结果的变化并修改它们的反应。

支持人工智能的机器旨在分析和解释数据,然后根据这些解释解决问题。通过机器学习,计算机会学习一次如何对某个结果采取行动或做出反应,并在未来知道采取相同的行动。

大数据是一种传统计算。它不会根据结果采取行动,而只是寻找结果。它定义了非常大的数据集,但也可以是极其多样的数据。在大数据集中,可以存在结构化数据,如关系数据库中的事务数据,以及结构化或非结构化数据,例如图像、电子邮件数据、传感器数据等。

它们在使用上也有差异。大数据主要是为了获得洞察力,例如Netflix网站可以根据人们观看的内容了解电影或电视节目,并向观众推荐哪些内容。因为它考虑了客户的习惯以及他们喜欢的内容,推断出客户可能会有同样的感觉。

人工智能是关于决策和学习做出更好的决定。无论是自我调整软件、自动驾驶汽车还是检查医学样本,人工智能都会在人类之前完成相同的任务,但速度更快,错误更少。

虽然它们有很大的区别,但人工智能和大数据仍然能够很好地协同工作。这是因为人工智能需要数据来建立其智能,特别是机器学习。例如,机器学习图像识别应用程序可以查看数以万计的飞机图像,以了解飞机的构成,以便将来能够识别出它们。

人工智能实现最大的飞跃是大规模并行处理器的出现,特别是GPU,它是具有数千个内核的大规模并行处理单元,而不是CPU中的几十个并行处理单元。这大大加快了现有的人工智能算法的速度,现在已经使它们可行。

大数据可以采用这些处理器,机器学习算法可以学习如何重现某种行为,包括收集数据以加速机器。人工智能不会像人类那样推断出结论。它通过试验和错误学习,这需要大量的数据来教授和培训人工智能。

人工智能应用的数据越多,其获得的结果就越准确。在过去,人工智能由于处理器速度慢、数据量小而不能很好地工作。也没有像当今先进的传感器,并且当时互联网还没有广泛使用,所以很难提供实时数据。人们拥有所需要的一切:快速的处理器、输入设备、网络和大量的数据集。毫无疑问,没有大数据就没有人工智能。

发布了241 篇原创文章 · 获赞 21 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览