文章目录
一、自叙
说来惭愧,“卷积”这两个字本人从大学专业课第一次接触到现在一直没有理解。出来工作后也经常听说卷积,这几年开始流行的人工智能,也经常听到“卷积神经网络”这个词。所以我时常在想:卷积到底是啥意思?为什么好多领域都在用卷积?为什么卷积公式是这样?到底怎样卷积?带着这样的疑问,开始看各种视频,各种博文来理解卷积。因此写下此篇文章来记录一下。
二、卷积的定义
卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。(源于:百度百科)
上面是百度百科给的定义,第一次接触的时候也是一头雾水,就看懂了一句:卷积是一种数学运算。
既然卷积是一种数学运算,那么肯定有公式吧。我以信号与系统里的卷积公式来解释。
-
连续LTI系统下的卷积公式为:
-
离散LTI系统下的卷积公式为:
看到这里依然云里雾里的,接下来我们一步步解释。
三、卷积公式的推导
3.1 什么是LTI系统?
LTI系统也叫线性时不变系统。L为(linear)单词的首字母,意思为线性,TI为(time invariant)的两个单词首字母,意思为时不变。
如何理解LTI系统?
- 首先来看什么是线性系统,前提我们要了解什么是齐次性和叠加性。
-
齐次性:
如果一个输入 x 1 ( t ) x_1(t) x1(t)经过一个系统后输出 y 1 ( t ) y_1(t) y1(t),则有输入 α x 1 ( t ) αx_1(t) αx1(t)经过此系统后输出 α y 1 ( t ) αy_1(t) αy1(t)。称此系统满足齐次性。
-
叠加性:
如果一个输入 x 1 ( t ) x_1(t) x1(t)经过一个系统输出 y 1 ( t ) y_1(t) y1(t),另一个输入 x 2 ( t ) x_2(t) x2(t)经过此系统输出 y 2 ( t ) y_2(t) y2(t),则有输入 x 1 ( t ) + x 2