卷积的理解、卷积公式的推导以及计算


一、自叙

   说来惭愧,“卷积”这两个字本人从大学专业课第一次接触到现在一直没有理解。出来工作后也经常听说卷积,这几年开始流行的人工智能,也经常听到“卷积神经网络”这个词。所以我时常在想:卷积到底是啥意思?为什么好多领域都在用卷积?为什么卷积公式是这样?到底怎样卷积?带着这样的疑问,开始看各种视频,各种博文来理解卷积。因此写下此篇文章来记录一下。

二、卷积的定义

  卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。(源于:百度百科)

  上面是百度百科给的定义,第一次接触的时候也是一头雾水,就看懂了一句:卷积是一种数学运算

  既然卷积是一种数学运算,那么肯定有公式吧。我以信号与系统里的卷积公式来解释。

  • 连续LTI系统下的卷积公式为:
    在这里插入图片描述

  • 离散LTI系统下的卷积公式为:
    在这里插入图片描述
    看到这里依然云里雾里的,接下来我们一步步解释。

三、卷积公式的推导

3.1 什么是LTI系统?

  LTI系统也叫线性时不变系统。L为(linear)单词的首字母,意思为线性,TI为(time invariant)的两个单词首字母,意思为时不变。

  如何理解LTI系统?

  1. 首先来看什么是线性系统,前提我们要了解什么是齐次性和叠加性。
  • 齐次性
    如果一个输入 x 1 ( t ) x_1(t) x1(t)经过一个系统后输出 y 1 ( t ) y_1(t) y1(t),则有输入 α x 1 ( t ) αx_1(t) αx1(t)经过此系统后输出 α y 1 ( t ) αy_1(t) αy1(t)。称此系统满足齐次性
    在这里插入图片描述
    在这里插入图片描述

  • 叠加性
      如果一个输入 x 1 ( t ) x_1(t) x1(t)经过一个系统输出 y 1 ( t ) y_1(t) y1(t),另一个输入 x 2 ( t ) x_2(t) x2(t)经过此系统输出 y 2 ( t ) y_2(t) y2(t),则有输入 x 1 ( t ) + x 2

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱奔跑的虎子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值