Central Similarity Quantization for Efficient Image and Video Retrieval
哈希图像检索文章学习笔记Central Similarity Quantization for Efficient Image and Video Retrieval摘要:现在哈希算法通常只是从成对或者三元组的数据关系中学习哈希函数,因此只在局部捕获了数据的相似性,学习效率低,冲突率低。本文提出了一种全新的相似性度量,称为中心相似度,鼓励相似的图像产生的哈希码逼近一个共同的哈希中心,不同的图像则收敛到不同的哈希中心。以提高哈希的学习效率和检索精度。本文引入了一个新的概念,即散列中心来计算所提出的




