文港
码龄6年
关注
提问 私信
  • 博客:25,415
    25,415
    总访问量
  • 18
    原创
  • 233,154
    排名
  • 84
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-09-17
博客简介:

qq_43227353的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    148
    当月
    0
个人成就
  • 获得72次点赞
  • 内容获得2次评论
  • 获得161次收藏
  • 代码片获得221次分享
创作历程
  • 4篇
    2024年
  • 12篇
    2022年
  • 9篇
    2021年
成就勋章
TA的专栏
  • python基础与数据分析
    6篇
  • 机器学习
    3篇
  • 研究生课程笔记
    8篇
  • 高等概率论
    7篇
  • 爬虫
  • 概率论
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基本的数据分析方法

描述统计(Descriptive Statistics): 描述统计是对数据集中的变量进行总结和描述的方法,常用的描述统计指标包括:数据探索分析(Exploratory Data Analysis,EDA): EDA是对数据集进行初步分析和探索的过程,旨在发现数据的特点、结构和潜在关系,常用的方法包括:相关性分析(Correlation Analysis): 相关性分析用于衡量两个或多个变量之间的关联程度,常用的方法包括:回归分析(Regression Analysis): 回归分析用于探究自变量和因变量之
原创
发布博客 2024.04.23 ·
398 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

matplotlib常见图表代码

matplotlib基本绘图、图形样式、子图绘制、文本和注释、图形保存等
原创
发布博客 2024.04.23 ·
395 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

数据转换和规范化

假设我们有一个包含身高和体重的数据集,我们想要建立一个线性回归模型来预测一个人的体重。但是,在进行建模之前,我们需要对数据进行转换和规范化。接下来,我们可以对身高和体重进行数据标准化,使其均值为0,方差为1。这样做可以提高模型的收敛速度和性能。在进行数据转换和规范化之前,我们首先需要处理缺失值。我们可以使用均值填充缺失值来处理体重的缺失值。通过数据转换和规范化,我们将原始数据转换为了标准化后的数据,使其更适合用于建模分析。
原创
发布博客 2024.04.23 ·
999 阅读 ·
23 点赞 ·
0 评论 ·
7 收藏

线性插值和多项式插值

使用插值方法填充缺失值,如线性插值、多项式插值
原创
发布博客 2024.04.23 ·
564 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

云服务器实时下载

云服务器实时下载数据,利用rsync
原创
发布博客 2022.06.09 ·
344 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

RBM受限玻尔兹曼机

受限玻尔兹曼机(RBM)一、RBM的网络结构RBM的网络结构如下图所示:RBM中包括两层,即:可见层(visible layer),图上的___v___隐藏层(hidden layer),图上的___h___由上图可知,在同一层中,如上图中的可见层,在可见层中,其节点之间是没有连接的,而在层与层之间,其节点是全连接的,这是RBM最重要的结构特征:层内无连接,层间全连接。在RBM的模型中,有如下的性质:当给定可见层神经元的状态时。各隐藏层神经元的之间是否激活是条件独立的;反之也同样成立。
原创
发布博客 2022.04.07 ·
1182 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

DBN深度信念网络

三、DBN3.1 生成模型深度信念网络是一个生成模型,用来生成符合特定分布的样本。隐变量用来描述在可观测变量之间的高阶相关性。假如加入服从分布 𝑝(𝑣)的训练数据,通过训练得到一个深度信念网络。生成样本时,先在最顶两层进行足够多的吉布斯采样,在达到热平衡时生成样本ℎ^((𝐿−1)),然后依次计算下一层隐变量的分布。因为在给定上一层变量取值时,下一层的变量是条件独立的,故可独立采样。这样,从第𝐿−1层开始,自顶向下进行逐层采样,最终得到可观测层的样本。3.2 参数学习深度信念网络最直接的训练方式是
原创
发布博客 2022.04.07 ·
3320 阅读 ·
3 点赞 ·
0 评论 ·
42 收藏

感知机原理及其代码实现

感知机
原创
发布博客 2022.03.29 ·
3126 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

《统计计算》

南京审计大学统计学研究课程《统计计算与优化》
原创
发布博客 2022.03.29 ·
1078 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

高等概率论 Chapter 9. Integration with Respect to a Probability Measure1

南京审计大学统计学研究生第一学期课程,《高等概率论》。
原创
发布博客 2022.03.29 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高等概率论 Chapter 8. Random Variables

南京审计大学统计学研究生第一学期课程,《高等概率论》。
原创
发布博客 2022.03.29 ·
529 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

高等概率论 Chapter 7 Construction of a Probability Measure on R

南京审计大学统计学研究生第一学期课程,《高等概率论》。
原创
发布博客 2022.03.29 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高等概率论 Chapter 6 Construction of a Probability Measure

南京审计大学统计学研究生第一学期课程,《高等概率论》。
原创
发布博客 2022.03.29 ·
284 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

高等概率论 Chapter 5. Random Variables on a Countable Space

南京审计大学统计学研究生第一学期课程,《高等概率论》
原创
发布博客 2022.03.19 ·
346 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

高等概率论 Chapter 2. Axioms of Probability

南京审计大学统计学研究生第一学期课程,《高等概率论》
原创
发布博客 2022.03.19 ·
546 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

高等概率论 Chapter 1. Introduction

南京审计大学统计学研究生第一学期课程,《高等概率论》
原创
发布博客 2022.03.19 ·
423 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

高等概率论_第六周教学内容

南京审计大学统计学研究生第一学期课程,《高等概率论》
原创
发布博客 2022.03.19 ·
0 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高等概率论_第二周教学内容

南京审计大学统计学研究生第一学期课程,《高等概率论》
原创
发布博客 2022.03.19 ·
0 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SQL Task03:复杂查询方法-视图、子查询、函数等

文章目录3.1 视图3.1.1 什么是视图3.1.2 视图与表有什么区别3.1.3 为什么会存在视图3.1.4 如何创建视图3.1.5 如何修改视图结构3.1.6 如何更新视图内容3.1.7 如何删除视图3.2 子查询3.2.1 什么是子查询3.2.2 子查询和视图的关系3.2.3 嵌套子查询3.2.4 标量子查询3.2.5 标量子查询有什么用3.2.6 关联子查询小结练习题-第一部分3.13.23.33.43.3 各种各样的函数3.3.1 算数函数3.3.2 字符串函数3.3.3 日期函数3.3.4 转换
转载
发布博客 2021.12.20 ·
318 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SQL Task02:SQL基础查询与排序 ---- 习题

Task02:SQL基础查询与排序 ---- 习题ref练习题1编写一条SQL语句,从product(商品)表中选取出“登记日期(regist在2009年4月28日之后”的商品,查询结果要包含product_name和regist_date两列。SELECT product_name, regist_date FROM productWHERE regist_date > '2009/4/28'练习题2请说出对product 表执行如下3条SELECT语句时的返回结果。
原创
发布博客 2021.12.16 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多