1.在卫星的遥感图像中,一般植被或建筑物是比较大明显物体,相对而言,路属于较难的目标(hard example),在图像分割时,不进行特殊处理,会导致无法正确分类分割。语义分割就是像素分类。

2,使用keras自带的的BCE Loss(binary_crossentropy)与accuracy评价来训练及验证unet模型,设定及效果如下:
model.compile(optimizer=Adam(lr=1e-3), loss='binary_crossentropy', metrics=['accuracy'])

3.使用balanced_cross_entropy 与dice_coef 评价来训练及验证模型,设定及效果如下:
def balanced_cross_entropy(alpha=.75):
def balanced_cross_entropy_fixed(y_true, y_pred):
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
ret

本文探讨了卫星遥感图像中如道路等小物体的分割识别问题,介绍了利用unet模型配合不同的损失函数,如BCE Loss、balanced_cross_entropy以及Dice loss和focal loss,以提高分割精度和分类效果。
最低0.47元/天 解锁文章
878

被折叠的 条评论
为什么被折叠?



