Satellite卫星遥感图像中小物体的分割识别

本文探讨了卫星遥感图像中如道路等小物体的分割识别问题,介绍了利用unet模型配合不同的损失函数,如BCE Loss、balanced_cross_entropy以及Dice loss和focal loss,以提高分割精度和分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.在卫星的遥感图像中,一般植被或建筑物是比较大明显物体,相对而言,路属于较难的目标(hard example),在图像分割时,不进行特殊处理,会导致无法正确分类分割。语义分割就是像素分类。
遥感图片

2,使用keras自带的的BCE Loss(binary_crossentropy)与accuracy评价来训练及验证unet模型,设定及效果如下:

model.compile(optimizer=Adam(lr=1e-3), loss='binary_crossentropy', metrics=['accuracy'])

BCE Loss训练模型预测结果

3.使用balanced_cross_entropy 与dice_coef 评价来训练及验证模型,设定及效果如下:

def balanced_cross_entropy(alpha=.75):

    def balanced_cross_entropy_fixed(y_true, y_pred):

        pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
        pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))

        ret
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值