提示词是用户发给大模型 (LLM) 的文字,用于引导大模型生成特定的输出结果。也可以说是你给大模型发送的“指令”或“问题”。
提示词的重要性
提示词是与LLM交互的最直接媒介,直接影响输出的质量、相关性和实用性。
只有通过精心构造提示词,才能最大限度利用LLM的能力,让模型涌现出更准确、更符合我们期望的回答,降低AI幻觉。
大模型的提示词优化技巧与实战
提示词优化是提升大型语言模型(如DeepSeek)性能的关键技术,它通过精心设计输入指令来引导模型生成更准确、相关的输出。以下内容基于真实可靠的AI知识,我将逐步介绍优化技巧和实战应用,帮助您掌握这一技能。结构分为三部分:技巧详解、实战示例和总结建议。
一、提示词构建原则
提供足够的信息,指令清晰、明确
(1) 给模型提供足够多的信息(如问题背景、上下文环境、以及提供相关细节),让模型能够基于充足的信息来产生回应。
(2) 指令清晰明确,避免模糊性和歧义。清晰性意味着提示词要直接表达出想要模型执行的任务。
(3) 除了语言上要清晰,也可以使用标点符号来给模型更清晰的指令。
例如姓名后面加冒号, 姓名:John
示例:提供足够多的信息,清晰明确的指令:
你来扮演我的导游,我要到西安旅游,旅游地点需要包含钟楼、大雁塔、秦始皇兵马俑博物馆,因为我会带小孩,所以希望行程安排得宽松一些,帮我设计一个两天的行程,用表格形式输出,表格中只包含每天上午、下午的行程即可。
在复杂任务中分步骤来引导
在实践中,在复杂任务中可以分步骤来引导模型(给模型梳理逻辑,让模型按照我的逻辑思考)。
示例:分步骤引导模型:
你需要按照这个方式解题:
题目:小明有5个桔子,他又买了2袋桔子,每个袋子里有3个桔子,小明一共有几个桔子?计算过程:
1,小明开始有5个桔子。
2,2个袋子里,每个袋子里有3个桔子,3*2=6
3,一共有5+6=11个桔子,
答案:
小明一共有11个桔子。
新的题目:小明有11个苹果,他又买了3袋苹果,每个袋子里有4个苹果,小明一共有几个苹果?
提示工程 Prompt Engineering
提示工程是一门学科,它研究如何设计和优化提示词,以最大限度地发挥大型语言模型的能力,获得期望的、高质量的输出。采用一种工程化的思想来编写提示词。
提示词迭代过程
1.分析需求,明确思路
2.清晰规范严谨写提示词
3.验证提示词,反复修改迭代
Prompt的典型构成要素
角色–角色设定、角色背景或技能
要求–提出需求
任务–满足需求/目标的任务或任务清单
示例–成功案例 / 失败反例 / 提供格式模板
约束–显性限制/红线 + 偏好 + 风险规避/敏感项
流程–工作流程/步骤,引导大模型按制定步骤执行
示例模板:
通用提示词
# 角色:角色名称
- 角色概述和主要职责的一句话描述
## 技能:
1. 角色需要具备的技能1
2. 角色需要具备的技能2
3. 角色需要具备的技能3
# 要求:
1. 用户的具体需求1
2. 用户的具体需求2
3. 用户的具体需求3
# 任务:
- 需要让大模型执行的具体任务
# 工作流:
1. 描述角色工作流程的第一步
2. 描述角色工作流程的第二步
3. 描述角色工作流程的第三步
# 示例:
- 提供示例1:成功示例/失败范例,提供示例格式模板
- 提供示例2:成功示例/失败范例,提供示例格式模板
# 限制:
- 描述角色在互动过程中需要遵循的限制条件1
- 描述角色在互动过程中需要遵循的限制条件2
- 描述角色在互动过程中需要遵循的限制条件3
基于知识的回答示例
产品智能问答客服
# 角色
你是一个专业的产品智能问答客服,能够依据产品上下文,准确、清晰地回答用户关于产品的各种问题。
## 技能
### 技能1: 回答产品相关问题
1. 当用户提出关于产品的问题时,仔细分析问题的关键信息。
2. 依据产品上下文,查找与问题相关的内容。
3. 用简洁明了的语言,将找到的信息整理成答案回复给用户。
### 技能2: 处理复杂问题
1. 若用户的问题较为复杂,涉及多个方面,对问

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



