- 博客(168)
- 资源 (2)
- 收藏
- 关注
原创 使用Gradio搭建聊天UI实现质谱AI智能问答
1、获取api_key智谱AI开放平台网址:2、安装库3、执行一下代码,调用质谱api进行问答。
2024-04-30 15:54:44
1442
1
原创 使用scikit-opt中粒子群算法求解约束优化问题
或者采用罚函数法、增广拉格朗日函数法将约束优化问题转化为无约束优化问题后,可以采用梯度类、粒子群算法进行求解。,每次迭代若粒子位置满足约束且优于历史最优位置,则更新位置,逐步引导粒子在可行域内搜索最优解。粒子群算法求解约束优化问题,关键是约束的处理,初始化将粒子历史最优位置设为。
2024-04-09 13:27:40
1127
原创 使用Java调用Cplex求解带时间窗的车辆路径问题
在使用大M法的时候,务必注意M的取值:不能取太小,也不能取太大!取太小可能导致出现不可行解,取太大可能会因为计算机的精度问题导致约束失效。待优化的问题即为,如何决策车辆访问客户的路径,使得在满足一定约束的条件下,实现最小化总成本的目标。如果尝试减去数据类型的最大可能值,则这将导致一些计算问题。表示了车站与客户之间,以及客户之间的有向连接。所有车辆通常是同质化的,每辆车都存在容量上限。所有节点的集合可表示为。会导致求解出现问题,得不到最优解。个点组成,其中客户由。,时间可以包括在弧上。都有需要被满足的需求。
2024-02-21 21:29:28
853
原创 基于集合的粒子群算法(S-PSO)求解车辆路径优化问题
为了缓解现有离散PSO算法的不足,为在离散空间中使用PSO算法开发一个更通用和灵活的框架,Chen等提出了一套为基础的PSO (S-PSO)框架。离散变量天然可以用集合进行表示,S-PSO在集合空间中重新定义了PSO。
2024-01-31 14:22:49
1742
原创 基于蚁群算法的TSP问题建模求解(Python)
蚁群系统(Ant System或Ant Colony System(是由意大利学者Dorigo、Maniezzo等人于20世纪90年代(1992年)首先提出来的。他们在研究蚂蚁觅食的过程中,发现单个蚂蚁的行为比较简单,但是蚁群整体却可以体现一些智能的行为。例如蚁群可以在不同的环境下,寻找最短到达食物源的路径。这是因为蚁群内的蚂蚁可以通过某种信息机制实现信息的传递。后又经进一步研究发现,蚂蚁会在其经过的路径上释放一种可以称之为“信息素”的物质,蚁群内的蚂蚁对“信息素”具有感知能力,它们会沿着“信息素”浓度较高
2024-01-12 09:32:26
1776
原创 基于模拟退火算法的TSP问题建模求解(Python)
模拟退火算法(Simulated Annealing Algorithm)来源于固体退火原理,是一种基于概率的算法。将固体加温至充分高的温度,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,分子和原子越不稳定。而徐徐冷却时粒子渐趋有序,能量减少,原子越稳定。在冷却(降温)过程中,固体在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
2023-11-15 23:49:05
1174
原创 基于随机森林的波士顿房价预测
波士顿房地产市场竞争激烈,而你想成为该地区最好的房地产经纪人。为了更好地与同行竞争,你决定运用机器学习的一些基本概念,帮助客户为自己的房产定下最佳售价。幸运的是,你找到了波士顿房价的数据集,里面聚合了波士顿郊区包含多个特征维度的房价数据。你的任务是用可用的工具进行统计分析,并基于分析建立优化模型。这个模型将用来为你的客户评估房产的最佳售价。读取数据 CRIM ZN INDUS CHAS NOX R
2023-08-11 10:39:50
1357
原创 基于梯度下降算法的无约束函数极值问题求解
导数(Derivative),也叫。又名,是微积分中的重要基础概念。。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。对于一条直线来说,求该直线的斜率就是找到该直线上两个点x1y1和x2y2,分别求出两点在y和x上的增量。因此斜率就是y的改变量比上x的改变量,即ktanθΔyΔxx2−x1y2−y1。
2023-07-06 00:21:09
1491
原创 基于粒子群算法的无约束优化问题求解
粒子群算法(Particle Swarm Optimization,PSO)是由美国心理学家James Kennedy和电气工程师Russell Eberhart于1995年提出的一种算法,算是比较老也是非常经典的算法之一。采用Java编程粒子群算法求解了无约束优化问题中常用的几个测试函数。
2023-07-01 14:18:54
1614
原创 基于NSGA-II算法的多目标多旅行商问题建模求解
NSGA-II算法学习过程中涉及到了较多内容,除了遗传算法中,核心步骤外,又融入了等内容。在GA中,通常采用轮盘赌选择策略,为了加快收敛保留全局最优解,在采用轮盘赌的同时,通常引入精英保留(精英策略)提升算法性能。对于和,通常在原染色体上进行,生成子代染色后,直接替换掉原染色体。在NSGA-II中,每次迭代过程中,为了保证多样性,探索解空间,(采用的锦标赛选择)、和产生子代种群后不会进行替换。此时有原种群P,及选择交叉变异后得到子代种群Q,P、Q种群规模均为N,合并P和Q为2N的新种群R。
2023-06-26 00:23:32
1896
原创 基于Cplex求解器的JavaAPI语法使用
通过"// 定义一个浮点型的决策变量lb:lower bound,变量的下届ub:upper bound,变量的上届变量类型::连续变量“x”:变量的名字,可选择的项整形变量通过// 写法1:定义一个整型的决策变量// 写法2:以上写法等价于如下写法,从源码来看,model.intVar()方法内部还是调用了model.numVar()方法,因此两种写法等价,但此时不在需要传参IloNumVarType.Int:0-1变量通过进行定义:还有另一种简单写法,即。
2023-05-22 00:04:25
1777
原创 基于自适应遗传算法的TSP问题建模求解(Java)
普通遗传算法(Sample Genetic Algorithm, SGA)存在着严重的缺点,它的Pc和Pm的值是固定的,本文采用自适应遗传算法进行求解TSP问题。不管是优良个体还是劣质个体都经过了相同概率的交叉和变异操作。
2023-04-14 23:55:04
2539
8
原创 基于遗传算法的CVRP建模求解(Python)
单向:纯取货/纯送货;单配送中心:只有一个配送中心/车场;单车型:只考虑一种车型,需求不可拆分:客户需求只能有一辆车满足;车辆封闭:完成配送任务的车辆需回到配送中心;车辆充足:不限制车辆数量,即配送车辆需求均能满足;非满载:任意客户点的需求量小于车辆最大载重;优化目标:最小化车辆启动成本和车辆行驶成本之和;约束条件:车辆行驶距离约束,重量约束;已知信息:配送中心位置、客户点位置、客户点需求、车辆最大载重、车辆最大行驶距离、车辆启动成本、车辆单位距离行驶成本;minZ=C0K+C1∑i=0N
2023-03-08 14:59:57
8228
43
原创 粒子群算法求解无约束优化问题Rastrigin函数
Rastrigin函数的极小值,Rastrigin函数是一个典型的非线性多峰函数,在搜索区域内存在许多极大值和极小值,导致寻找全局最小值比较困难,常用来测试寻优算法的性能。其中全局最小值点为(0,0),最小值为0。
2023-01-13 16:24:15
3707
原创 基于Dijkstra算法的最短路问题求解
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先遍历思想),直到扩展到终点为止。P的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而T则是记录还未求出最短路径的顶点(以及该顶点到起点V_0的距离)结果:[[A=0], [B=5], [C=3], [D=6], [E=7], [F=9]]step1:初始化:所有元素入优先级队列,如图3。更新邻居标号,如图5。更新邻居标号,如图7。
2021-11-02 10:36:28
1277
原创 数据降维与主成分分析
在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?例如,某人要做一件上衣要测量很多尺寸,如身长、袖长、胸围、腰围、肩宽、肩厚等十几项指标,但某服装厂要生产一批新型服装绝不可能把尺寸的型号分得过多?实际生产中,只用M,L,XL等型号代替。
2024-10-23 19:13:06
714
原创 基于线性回归(Linear Regression)的房屋价格预测
线性回归是统计学中的一种基本预测模型,用于估计因变量(响应变量)和一个或多个自变量(解释变量)之间的关系。线性回归模型假设这些变量之间存在线性关系。根据自变量的数量,线性回归可以分为简单线性回归(一个自变量)和多元线性回归(多个自变量)。梯度下降是一种优化算法,用于最小化一个函数,通常用于机器学习中的参数优化问题。其核心思想是:通过迭代地调整参数,沿着目标函数(通常是损失函数)梯度下降的方向逐步逼近最小值。
2024-10-22 21:59:41
949
原创 kaggle| 使用线性回归进行洪水预测
这个数据集包含了可能影响洪水风险的各种因素的信息。数据集包括几个特征,代表与环境、社会、基础设施和治理相关的因素,这些因素可能会影响洪水事件的可能性和严重程度。此外,它还包括一个目标变量“FloodProbability”,它可能表明在该地区不同地区发生洪水的可能性。
2024-10-21 10:21:17
607
原创 基于Q学习的迷宫寻路问题
定义了智能体可以执行的动作集合,在这个迷宫问题中,动作包括向上、向下、向左、向右移动,分别用数字 0、1、2、3 表示。
2024-10-18 20:25:57
340
原创 基于强化学习的多码头集卡路径优化
第一个文件的训练过程消耗了最长的训练时间,大约运行了119小时,而剩余文件的训练过程平均只需要40分钟。这种现象发生的原因是,在第一个文件的前750个回合中,DQN从头开始构建学习模型,而接下来的训练过程则利用了之前训练过程中训练好的模型。在ITTRP中,智能体的最终目标是找到一条最优的集卡路径,该路径使集卡的总成本最小(travel cost、空驶成本empty truck trip cost和惩罚成本)。等待,设置较小的奖励为0.01,这是合理的,同时避免智能体认为该动作是最佳动作,防止多次选择。
2024-10-18 20:11:28
605
原创 论文阅读:On determining the hinterlands of China‘s foreign trade container ports
集装箱港口腹地的边界线,只要存在,就可以作为未来港口发展和基础设施规划的参考点。在早期划定中国港口腹地的努力中,要么考虑的港口数量有限,要么仅根据港口总吞吐量划定腹地。因此,这些研究都没有让我们清楚地了解共享腹地的特征。为了解决这些缺点,本文使用隶属度方法和Huff模型,尽可能地描绘了中国20个主要外贸集装箱港口的腹地。结果表明,中国腹地存在着激烈的港口竞争,不同类型港口的腹地特征在范围和空间连续性上存在差异。我们的研究对中央和地方政府以及港口当局具有重要的政策意义。
2024-10-09 11:03:08
1113
原创 全连接神经网络
全连接神经网络是一种特殊的前馈神经网络,其中每一层的每一个神经元都与下一层的每一个神经元相连。这意味着每个节点都接收来自前一层所有节点的输入,并对这些输入进行加权求和,然后通过激活函数输出。
2024-09-25 21:20:07
1976
原创 神经网络激活函数
神经网络可以用在分类问题和回归问题上,不过需要根据情况改变输出层的激活函数。一般而言,回归问题用恒等函数,分类问题用softmax函数。
2024-09-24 21:22:37
1119
原创 大语言模型中,role为user、assistant、system有什么区别
在大语言模型中,通常涉及到三种角色:用户(user)、助手(assistant)和系统(system)。它们的区别在于其在对话或交互过程中扮演的角色和功能。
2024-08-26 13:12:55
1067
原创 遍历时修改列表导致错误或意外行为
在 Python 中,直接在遍历列表时修改该列表(例如添加或删除元素)会导致错误或意外行为。这是因为在遍历过程中,列表的大小和内容可能会发生变化,从而影响迭代的结果。使用切片(或其他方法)来避免这种情况是一个常见的编程实践。在这个例子中,items[:] 创建了一个原始列表的副本。遍历副本时,删除原始列表中的元素不会影响副本的迭代。为了避免上述问题,可以使用切片或列表的副本进行遍历。这样可以确保在遍历时不会影响原始列表的结构。
2024-08-25 11:38:17
200
原创 Python字符串格式化方法输出到控制台
将需要格式化的数据存储到一个列表list中(若涉及多个字段,将多个字段打包为元组再append到list中即可),然后将list转为pandas的DataFrame即可。要使 resource_id 对齐,可以使用 Python 的字符串格式化方法。在占位符中指定对齐方式、宽度和精度等格式。
2024-08-13 15:25:51
218
原创 确定性存储模型(Deterministic Inventory Model)
确定性存储模型(Deterministic Inventory Model)是一种用于管理库存的数学模型。在这种模型中,需求是已知且确定的。优化总成本最小化是库存管理中的一个重要目标,通常包括订购成本、存储成本和缺货成本等。在无约束条件下,建立优化总成本的函数,通过微积分方法便可确定最佳订货量、订货周期。
2024-08-09 15:34:56
1295
原创 Python使用pyecharts库渲染中国地图
在Python中,可以使用多个库来进行中国地图的可视化。最常用的库包括 pyecharts 和 folium。下面是使用pyecharts 库进行中国地图可视化的示例。
2024-08-06 10:36:37
323
原创 马尔科夫链
马尔科夫链是一种特殊类型的随机过程,具有“无记忆性”的特性。也就是说,未来的状态只依赖于当前状态,而与过去的状态无关。马尔科夫链通常用状态转移图或转移概率矩阵来表示。每个状态都有一个转移概率,指明从一个状态转移到另一个状态的可能性。
2024-08-04 14:13:49
731
原创 使用Floyd算法求解两点间最短距离
Floyd算法又称为Floyd-Warshell算法,其实Warshell算法是离散数学中求传递闭包的算法,两者的思想是一致的。Floyd算法是求解多源最短路时通常选用的算法,经过一次算法即可求出任意两点之间的最短距离,并且可以处理有负权边的情况(但无法处理负权环),算法的时间复杂度是On3,空间复杂度是On2。
2024-08-03 10:11:06
298
原创 使用Pandas将数据写入同一个Excel的不同sheet中
在使用 pandas 库处理 Excel 文件时,需要将数据写入到同一个 Excel 文件中的不同工作表(sheet)中。pandas 提供了一个方便的方法通过 ExcelWriter 对象来实现这一点。
2024-08-03 10:04:51
801
原创 Python使用内置logging模块打印日志
在Python中,可以使用内置的 logging 模块来打印日志。logging 模块提供了一个灵活的框架,用于在各种输出目标(如控制台、文件、网络等)上记录日志信息。以下是一个基本的示例,展示了如何使用 logging 模块在控制台和文件中记录日志。除了在控制台输出日志,还可以将日志记录到文件中。3、记录日志:使用不同的日志级别记录日志信息。2、基本配置:设置日志输出格式和日志级别。4、将日志输出到文件。
2024-08-03 09:59:45
234
1
原创 Python高性能计算:进程、线程、协程、并发、并行、同步、异步
并发(concurrency):指在同一时刻只能有一条指令执行,但多个进程指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,使多个进程快速交替的执行。并行在多处理器系统中存在,而并发可以在单处理器和多处理器系统中都存在,并发能够在单处理器系统中存在是因为并发是并行的假象,并行要求程序能够同时执行多个操作,而并发只是要求程序假装同时执行多个操作(每个小时间片执行一个操作,多个操作快速切换执行)。所以无论从微观还是从宏观来看,二者都是一起执行的。
2024-08-02 22:22:22
911
原创 Python数据分析:连接数据库的几种方式
在数据分析和科学计算领域,数据通常存储在数据库中。Python 连接 MySQL 数据库可以使用多种库,常见的有 mysql-connector-python、PyMySQL等。
2024-08-02 21:51:38
1092
原创 gpt4o参数设置对输出内容的影响
影响大模型输出文本字数的参数主要有以下几个:- "maxTokens": 此参数直接限制了模型生成的文本最大长度。如果模型遇到结尾指示符(例如句点)之前就达到了最大长度,则会截断输出。- "temperature": 较高的温度会导致模型生成更短的文本,因为高温度会增加模型选择较短句子的可能性。- "topP": 较小的 "topP" 值会导致模型生成更短的文本,因为较小的 "topP" 值会限制模型在生成每个词时考虑的候选词数。- "presencePenalty": 较高的 "presence
2024-08-02 19:44:53
559
原创 NumPy和Pandas中的布尔索引
布尔索引(Boolean Indexing)是数据分析中一种强大且常用的技术,用于通过布尔值数组(即包含 True 和 False 的数组)来选择数据子集。布尔索引可以用于 NumPy 数组、Pandas 数据框等数据结构。布尔索引是一种非常有用的技术,可以通过条件筛选数据。它不仅简化了代码,还提高了数据操作的效率。无论是在 NumPy 还是 Pandas 中,布尔索引都能帮助你快速、简洁地选择和操作数据子集。
2024-08-01 17:23:40
255
原创 蒙特卡罗方法在不确定性问题中的应用
蒙特卡洛方法(Monte Carlo Method)是一大类随机算法的总称,是一种数值计算技术,其思想是其思想是通过随机样本来估计真实值:从问题的概率分布中生成大量随机样本,对每个样本进行模拟和计算,然后对所有样本的结果进行统计分析,以估计复杂系统的行为或特性。它广泛应用于积分计算、随机过程模拟、金融风险分析、物理系统模拟和优化问题等领域,依赖于大数定律和中心极限定理来确保结果的准确性和可靠性。
2024-08-01 15:22:27
936
C:\Users\pengkangzhen\Documents\WeChat Files\wxid-k2c7i8tc5u7v22
2024-07-17
top K最短路径问题(K Shortest Path Routing)K最短路径算法与应用分析.pdf
2023-12-22
基于蚁群算法的动态VRP问题离线误差计算
2023-09-09
基于粒子群算法的无约束优化问题求解(Java)
2023-07-01
基于NSGA-II算法的多目标多旅行商问题建模求解(Java)
2023-06-27
自适应遗传算法求解旅行商问题(Java代码)
2023-04-15
基于遗传算法的CVRP建模求解-Python代码
2023-03-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅