数据降维与主成分分析 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?例如,某人要做一件上衣要测量很多尺寸,如身长、袖长、胸围、腰围、肩宽、肩厚等十几项指标,但某服装厂要生产一批新型服装绝不可能把尺寸的型号分得过多?实际生产中,只用M,L,XL等型号代替。
基于线性回归(Linear Regression)的房屋价格预测 线性回归是统计学中的一种基本预测模型,用于估计因变量(响应变量)和一个或多个自变量(解释变量)之间的关系。线性回归模型假设这些变量之间存在线性关系。根据自变量的数量,线性回归可以分为简单线性回归(一个自变量)和多元线性回归(多个自变量)。梯度下降是一种优化算法,用于最小化一个函数,通常用于机器学习中的参数优化问题。其核心思想是:通过迭代地调整参数,沿着目标函数(通常是损失函数)梯度下降的方向逐步逼近最小值。
kaggle| 使用线性回归进行洪水预测 这个数据集包含了可能影响洪水风险的各种因素的信息。数据集包括几个特征,代表与环境、社会、基础设施和治理相关的因素,这些因素可能会影响洪水事件的可能性和严重程度。此外,它还包括一个目标变量“FloodProbability”,它可能表明在该地区不同地区发生洪水的可能性。
基于强化学习的多码头集卡路径优化 第一个文件的训练过程消耗了最长的训练时间,大约运行了119小时,而剩余文件的训练过程平均只需要40分钟。这种现象发生的原因是,在第一个文件的前750个回合中,DQN从头开始构建学习模型,而接下来的训练过程则利用了之前训练过程中训练好的模型。在ITTRP中,智能体的最终目标是找到一条最优的集卡路径,该路径使集卡的总成本最小(travel cost、空驶成本empty truck trip cost和惩罚成本)。等待,设置较小的奖励为0.01,这是合理的,同时避免智能体认为该动作是最佳动作,防止多次选择。
论文阅读:On determining the hinterlands of China‘s foreign trade container ports 集装箱港口腹地的边界线,只要存在,就可以作为未来港口发展和基础设施规划的参考点。在早期划定中国港口腹地的努力中,要么考虑的港口数量有限,要么仅根据港口总吞吐量划定腹地。因此,这些研究都没有让我们清楚地了解共享腹地的特征。为了解决这些缺点,本文使用隶属度方法和Huff模型,尽可能地描绘了中国20个主要外贸集装箱港口的腹地。结果表明,中国腹地存在着激烈的港口竞争,不同类型港口的腹地特征在范围和空间连续性上存在差异。我们的研究对中央和地方政府以及港口当局具有重要的政策意义。
全连接神经网络 全连接神经网络是一种特殊的前馈神经网络,其中每一层的每一个神经元都与下一层的每一个神经元相连。这意味着每个节点都接收来自前一层所有节点的输入,并对这些输入进行加权求和,然后通过激活函数输出。
大语言模型中,role为user、assistant、system有什么区别 在大语言模型中,通常涉及到三种角色:用户(user)、助手(assistant)和系统(system)。它们的区别在于其在对话或交互过程中扮演的角色和功能。
遍历时修改列表导致错误或意外行为 在 Python 中,直接在遍历列表时修改该列表(例如添加或删除元素)会导致错误或意外行为。这是因为在遍历过程中,列表的大小和内容可能会发生变化,从而影响迭代的结果。使用切片(或其他方法)来避免这种情况是一个常见的编程实践。在这个例子中,items[:] 创建了一个原始列表的副本。遍历副本时,删除原始列表中的元素不会影响副本的迭代。为了避免上述问题,可以使用切片或列表的副本进行遍历。这样可以确保在遍历时不会影响原始列表的结构。
Python字符串格式化方法输出到控制台 将需要格式化的数据存储到一个列表list中(若涉及多个字段,将多个字段打包为元组再append到list中即可),然后将list转为pandas的DataFrame即可。要使 resource_id 对齐,可以使用 Python 的字符串格式化方法。在占位符中指定对齐方式、宽度和精度等格式。
确定性存储模型(Deterministic Inventory Model) 确定性存储模型(Deterministic Inventory Model)是一种用于管理库存的数学模型。在这种模型中,需求是已知且确定的。优化总成本最小化是库存管理中的一个重要目标,通常包括订购成本、存储成本和缺货成本等。在无约束条件下,建立优化总成本的函数,通过微积分方法便可确定最佳订货量、订货周期。
Python使用pyecharts库渲染中国地图 在Python中,可以使用多个库来进行中国地图的可视化。最常用的库包括 pyecharts 和 folium。下面是使用pyecharts 库进行中国地图可视化的示例。
马尔科夫链 马尔科夫链是一种特殊类型的随机过程,具有“无记忆性”的特性。也就是说,未来的状态只依赖于当前状态,而与过去的状态无关。马尔科夫链通常用状态转移图或转移概率矩阵来表示。每个状态都有一个转移概率,指明从一个状态转移到另一个状态的可能性。
使用Floyd算法求解两点间最短距离 Floyd算法又称为Floyd-Warshell算法,其实Warshell算法是离散数学中求传递闭包的算法,两者的思想是一致的。Floyd算法是求解多源最短路时通常选用的算法,经过一次算法即可求出任意两点之间的最短距离,并且可以处理有负权边的情况(但无法处理负权环),算法的时间复杂度是On3,空间复杂度是On2。
使用Pandas将数据写入同一个Excel的不同sheet中 在使用 pandas 库处理 Excel 文件时,需要将数据写入到同一个 Excel 文件中的不同工作表(sheet)中。pandas 提供了一个方便的方法通过 ExcelWriter 对象来实现这一点。
Python使用内置logging模块打印日志 在Python中,可以使用内置的 logging 模块来打印日志。logging 模块提供了一个灵活的框架,用于在各种输出目标(如控制台、文件、网络等)上记录日志信息。以下是一个基本的示例,展示了如何使用 logging 模块在控制台和文件中记录日志。除了在控制台输出日志,还可以将日志记录到文件中。3、记录日志:使用不同的日志级别记录日志信息。2、基本配置:设置日志输出格式和日志级别。4、将日志输出到文件。