机器学习入门实践——线性回归模型(波士顿房价预测)
一、背景介绍
给定一个大小为 n n n的数据集 { y i , x i 1 , . . . , x i d } i = 1 n {\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n} { yi,xi1,...,xid}i=1n,其中 x i 1 , … , x i d x_{i1}, \ldots, x_{id} xi1,…,xid是第 i i i个样本 d d d个属性上的取值, y i y_i yi是该样本待预测的目标。线性回归模型假设目标 y i y_i yi可以被属性间的线性组合描述,即
y i = ω 1 x i 1 + ω 2 x i 2 + … + ω d x i d + b , i = 1 , … , n y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b, i=1,\ldots,n yi=ω1
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=108704221&d=1&t=3&u=1d3e3075d33d468db5071f8d3fe02d58)
3801

被折叠的 条评论
为什么被折叠?



