DD-∞-大数据面试流程及面试题

hr问:工作地点要求,目前工作情况(为什么离职)
技术面试:
1.个人介绍
2.在公司最近的一个项目。
3.项目中遇到最复杂的问题和最终解决方案。
4.职业规划
甲方面试: 沟通近期所做工作内容,所使用的技术和需求内容,问题比较偏向于业务。
(面试前或面试后·背景调查调·)

技术面试可能会问道的技术知识点:
说说对hadoop的理解,都有哪些组件,分别是干什么的
hadoop是一个分布式系统基础框架,主要包括HDFS(分布式存储系统),Mapreduce(分布式计算框架),Yarn(资源管理框架)

项目中使用到的案例场景有哪些

·
·

Hive的四种排序

order by
order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)
只有一个reducer,会导致当输入规模比较大时,需要较长的时间。
set hive.mapred.mode=nonstrict; (default value / 默认值)
set hive.mapred.mode=strict;
order by 和数据库中的order by功能一致按照某一项&几项排序输出。
与数据库中order by的区别在于hive.mapred.mode = strict模式下 必须指定limit否则执行会报错
原因:在order by状态下所有的数据都会到一台服务器进行reduce操作也就是只有一个reduce, 如果在数据量大的情况下会出现无果的情况,如果进行limit n,那只有n * map
number 条记录而已。只有一个reduce也可以出来里过来

sort by
sort by不是全局排序,其在数据进入reducer前完成排序
因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer 的输出有序,不保证全局有序。
sort by 不受hive.mapred.mode是否为strict,nostrict的影响。
sort by的数据只能保证在同一个reduce中的数据可以按指定字段排序。
使用sort by你可以指定执行的reduce个数(set mapred.reduce.tasks=),对输出的 数据在执行归并排序,即可以得到全部结果。
注意:可以用limit子句大大减少数据量。使用limit n后,传输到reduce端(单机)的数据记录就 减少到n*(map个数)。否则由于数据过大可能出不了结果。

distribute by
按照指定的字段对数据进行划分到不同的输出reduce / 文件中。
insert overwrite local directory ‘/home/hadoop/out’ select * from test order by name

distribute by length(name);
此方法会根据name的长度划分到不同的reduce中,最终输出到不同的文件中。
length 是内建函数,也可以指定其他的函数或这使用自定义函数。

Cluster By
cluster by 除了具有 distribute by 的功能外还兼具 sort by 的功能。
但是排序只能是倒序排序,不能指定排序规则为asc 或者desc。

·
·

Hive的分区分桶

我们发现其实桶的概念就是MapReduce的分区的概念,两者完全相同。物理上每个桶就是目录里的一个文件,一个作业产生的桶(输出文件)数量和reduce任务个数相同。

而分区表的概念,则是新的概念。分区代表了数据的仓库,也就是文件夹目录。每个文件夹下面可以放不同的数据文件。通过文件夹可以查询里面存放的文件。但文件夹本身和数据的内容毫无关系。

桶则是按照数据内容的某个值进行分桶,把一个大文件散列称为一个个小文件。 这些小文件可以单独排序。如果另外一个表也按照同样的规则分成了一个个小文件。两个表join的时候,就不必要扫描整个表,只需要匹配相同分桶的数据即可。效率当然大大提升。

同样,对数据抽样的时候,也不需要扫描整个文件。只需要对每个分区按照相同规则抽取一部分数 据即可。

• 分区表
如果在建表时使用了 PARTITIONED BY,表即为分区表。分区表下的数据按分区键的值(或值的范围)放在HDFS下的不同目录中,可以有效减少查询时扫描的数据量,提升查询效率。
• 非分区表
非分区表即除分区表之外的表。
按表是否分桶分类
按表是否分桶可以将表分为两类:分桶表和非分桶表。
• 分桶表
如果在建表时使用了 CLUSTERED BYINTO … BUCKETS,表即为分桶表。分桶表下的数据按
分桶键的哈希值放在HDFS下的不同目录中,可以有效减少查询时扫描的数据量,提升查询效率。
• 非分桶表
非分桶表即除分桶表之外的表

贷款的五级分类,正常、关注、次级、可疑、损失。

1、正常。借款人能够履行合同,一直能正常还本付息,不存在任何影响贷款本息及时全额偿还的消极因素,贷款损失的概率为02、关注。尽管借款人有能力偿还贷款本息,但存在一些可能对偿还产生不利影响的因素,贷款损失的概率不会超过5%3、次级。借款人的还款能力出现明显问题,需要通过处分资产或对外融资乃至执行抵押担保来还款付息。贷款损失的概率在30%-50%4、可疑。借款人无法足额偿还贷款本息,即使执行抵押或担保,也肯定要造成一部分损失,贷款损失的概率在50%-75%之间。
5、损失。指借款人已无偿还本息的可能,无论采取什么措施和履行什么程序,贷款都注定要损失了,其贷款损失的概率在75%-100%

取3分钟内发生过多次教交易的客户,进行预警提示

原子交易流水表
、客户表
、码值表  
、账户表 
、卡表

取3分钟内发生过多次教交易的客户,进行预警提示

原子交易表 使用实时表
客户表账户表卡表使用t-1表

限制数据范围
10分钟与13分钟
将交易表数据进行限制分成两部分:
t1 一部分取10分钟内的数据
t2 一部分取13分钟内的数据
通过客户号进行关联 t1.cust_id=t2.cust_id
取三分钟内的异常数据 t1.tr_time+3<=t2.tr_time

使用kafka组件实时抽取去交易表数据
因为交易流水表的数据量比较大,先将交易表的数据做个限制,每次跑批筛选出截至到当前两天的数据做个临时表,然后才与其他的维表做规则关联
有因hive/spark 跑批比较满,每次跑批处理时间大于10分钟,对每次推送的时间延长处理,改为半个小时推送一次

待整理补充…………

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青鸟遇鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值