理想流体力学方程组

本文详细探讨了理想流体的质量、动量和能量守恒定律,通过数学推导得到了理想流体动力学的基本方程组,包括连续性方程、欧拉方程和能量守恒方程,并指出在连续可微流场中,熵S保持不变的性质。这些方程组在飞行器流场分析等领域有重要应用。
摘要由CSDN通过智能技术生成

1.引言

​ 理想流体指的是忽略粘性及热传导的流体,而实际流体通常总是有粘性和热传导的的流体.理想流体在很多情况下,是一个合理的近似.在研究飞行器周围的流场分布时,除飞行器表面附近一薄层中通常必须考虑粘性及热传导的影响外,在流场中其余的部分均可假设为理想流体来进行讨论;即使对整个流场均假设为理想流体,也可得出相当合理的结果.因此,对理想流体的讨论,不仅具有理论上的重要意义,而且具有实际上的重大价值.

2.模型搭建

​ 通常使用 u = ( u 1 , u 2 , u 3 ) \boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right) u=(u1,u2,u3) p p p ρ \rho ρ T T T等来描述流体的状态.在不定常运动的情形,它们都是时间 t t t及位置的笛卡儿坐标 x = ( x 1 , x 2 , x 3 ) \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) x=(x1,x2,x3)的函数.

u \boldsymbol{u} u速度向量,指流体微元的宏观运动速度,不是指个别流 体分子的不规则运动速度.设过点 x = ( x 1 , x 2 , x 3 ) \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) x=(x1,x2,x3)的面积微元 d S \mathrm{d}S dS,其单位法向量为 n n n,则在时间区间 [ t , t + d t ] [t, t+\mathrm{d} t] [t,t+dt]内沿着 n n n方向流过面积 d S \mathrm{d}S dS的流体体积为:
u ( t , x ) ⋅ n d S d t (1) \boldsymbol{u}(t, \boldsymbol{x}) \cdot \boldsymbol{n} \mathrm{d} S \mathrm{d} t\tag{1} u(t,x)ndSdt(1)
ρ \rho ρ质量密度,即单位体积流体的质量.则在时间区间 [ t , t + d t ] [t,t+\mathrm{d}t] [t,t+dt]内沿着 n n n方向流过面积 d S \mathrm{d}S dS的流体质量为:
ρ ( t , x ) u ( t , x ) ⋅ n d S d t (2) \rho(t, \boldsymbol{x}) \boldsymbol{u}(t, \boldsymbol{x}) \cdot \boldsymbol{n} \mathrm{d} S \mathrm{d} t\tag{2} ρ(t,x)u(t,x)ndSdt(2)
ρ u \rho\boldsymbol{u} ρu质量流向量,由上述分析,对于任意方向的速度向量 u \boldsymbol{u} u,在单位时间内,单位面积的流体质量为 ρ u ⋅ n \rho \boldsymbol{u} \cdot \boldsymbol{n} ρun

ρ u \rho\boldsymbol{u} ρu又称为动量密度向量,即单位体积流体的动量.在时间区间 [ t , t + d t ] [t,t+\mathrm{d}t] [t,t+dt]内沿法向量 n n n方向流过 d S \mathrm{d}S dS的流体动量为:
ρ u ( u ⋅ n ) d S d t = ρ n ( u ⊗ u ) d S d t (3) \rho \boldsymbol{u}(\boldsymbol{u} \cdot \boldsymbol{n}) \mathrm{d} S \mathrm{d} t=\rho\boldsymbol{n}(\boldsymbol{u} \otimes \boldsymbol{u}) \mathrm{d} S \mathrm{d} t\tag{3} ρu(un)dSdt=ρn(uu)dSdt(3)
其中 u ⊗ u \boldsymbol{u} \otimes \boldsymbol{u} uu为速度向量的张量积:
u ⊗ u = ( u 1 2 u 1 u 2 u 1 u 3 u 2 u 1 u 2 2 u 2 u 3 u 3 u 1 u 3 u 2 u 3 2 ) \boldsymbol{u} \otimes \boldsymbol{u}=\left(\begin{array}{ccc} u_{1}^{2} & u_{1} u_{2} & u_{1} u_{3} \\ u_{2} u_{1} & u_{2}^{2} & u_{2} u_{3} \\ u_{3} u_{1} & u_{3} u_{2} & u_{3}^{2} \end{array}\right) uu=u12u2u1u3u1u1u2u22u3u2u1u3u2u3u32
n ( u ⊗ u ) n(u \otimes u) n(uu)表示向量 n n n与矩阵 u ⊗ u \boldsymbol{u} \otimes \boldsymbol{u} uu普通意义下的乘法.同理称 ρ u ⊗ u \rho \boldsymbol{u} \otimes \boldsymbol{u} ρuu动量流张量

p p p压强,即作用在单位面积上的流体压力,其方向垂直于该面积,忽略流体的内摩擦(粘性).面积微元 d S \mathrm{d}S dS受到其单位法向量 n n n的正向一侧的流体压力为:
− p n d S (4) -p \boldsymbol{n} \mathrm{d} S\tag{4} pndS(4)
T T T绝对温度.根据热力学知识,一切描述热力学状态的量中,只有两个是相互独立的.因此, p p p ρ \rho ρ T T T这三个热力学量之间有一个确定的函数关系式:
p = f ( ρ , T ) (5) p=f(\rho, T)\tag{5} p=f(ρ,T)(5)
(5)式称为流体的状态方程,对于不同的流体,它具有不同的形式.特别地,若状态方程为:
p = R ρ T (6) p=R \rho T\tag{6} p=RρT(6)
则称为理想气体,其中 R R R为一个正常数.

e e e单位质量流体的内能,即由流体分子的不规则热运动所具有的动能以及由于分子间相对位置所决定的势能的总和.对理想气体,其分子间没有相互作用,故没有分子势能,而其内能只和温度有关,即 e e e只是 T T T的函数,而对于理想气体 T T T只与 ρ \rho ρ p p p有关.若(7)式成立:
e = c V T (7) e=c_{V} T\tag{7} e=cVT(7)
则称气体为多方气体(polytroPic),其中 c V c_{V} cV为一正常数,称为定容比热

ρ e + 1 2 ρ u 2 \rho e+\frac{1}{2} \rho u^{2} ρe+21ρu2能量密度,即单位体积中流体的能量,因为流体的能量由内能及宏观动能两部分组成,其中 u 2 = u 1 2 + u 2 2 + u 3 2 u^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} u2=u12+u22+u32.则时间区间 [ t , t + d t ] [t,t+\mathrm{d}t] [t,t+dt]内沿着 n n n方向流过面积微元 d S \mathrm{d}S dS的流体能量为:
( ρ e + 1 2 ρ u 2 ) u ⋅ n d S d t (8) \left(\rho e+\frac{1}{2} \rho u^{2}\right) \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{d} S \mathrm{d} t\tag{8} (ρe+21ρu2)undSdt(8)
( ρ e + 1 2 ρ u 2 ) u \left(\rho e+\frac{1}{2} \rho u^{2}\right) \boldsymbol{u} (ρe+21ρu2)u为能量流向量.

3.理想流体力学方程组

​ 对于理想流体,其在运动过程中应满足质量、动量及能量守恒定律,可因此推导出理想流体动力学的基本方程组.

3.1质量守恒定律

​ 在所考察的区域中任取一光滑的闭曲面 Γ \Gamma Γ,其所围的区域记为 Ω \Omega Ω.根据质量守恒定律,时间区间 [ t , t + d t ] [t,t+\mathrm{d}t] [t,t+dt]内,区域 Ω \Omega Ω中流体质量的增加量为:
∫ Ω ρ ( t 2 , x ) d x − ∫ Ω ρ ( t 1 , x ) d x \int_{\Omega} \rho\left(t_{2}, \boldsymbol{x}\right) \mathrm{d} x-\int_{\Omega} \rho\left(t_{1}, \boldsymbol{x}\right) \mathrm{d} x Ωρ(t2,x)dxΩρ(t1,x)dx
其中 d x = d x 1 d x 2 d x 3 \mathrm{d} x=\mathrm{d} x_{1} \mathrm{d} x_{2} \mathrm{d} x_{3} dx=dx1dx2dx3,即 d x \mathrm{d} x dx相当于体积微元,上式应等于在此段时间内经过边界 Γ \Gamma Γ流入 Ω \Omega Ω中的流体质量,结合(2)式应该为:
− ∫ t 1 t 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值