scipy2.2-optimize:fminbound函数定义域内最小值、fmin函数最小值、fsolve(非)线性方程求解

该博客介绍了如何使用Scipy的fminbound函数寻找一元函数在给定定义域内的最小值,以及fmin函数用于标量和多元函数最小值的求解。此外,讨论了fsolve函数解决非线性方程的优势和局限,包括牛顿法的使用以及雅可比行列式对收敛性的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标量(一元)函数定义域内最小值fminbound

求给定范围内函数的最小值

scipy.optimize.fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1)[source]

return:
xopt: 取最小值时自变量的值
fval: 函数最小值
ierr: 错误标志(如果收敛则为0,如果达到最大函数调用数则为1)
numfunc: 迭代时调用函数的次数

默认full_output=0,只返回数值xopt:最小值的自变量的值
改为full_output=True,返回元组(xopt, fval, ierr, numfunc)

示例:

def H1(x):
    z = 4/5 *( ((3-x)**2)/4 + 1/x)
    return z

p = optimize.fminbound(H1,1,5,full_output=True)
print(p)

输出

(3.1958227932467116, 0.25799608410776015, 0, 9)
标量(一元)、多元函数最小值fm
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nutron-ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值