帆帆的鞋_
码龄6年
关注
提问 私信
  • 博客:57,889
    57,889
    总访问量
  • 16
    原创
  • 1,648,487
    排名
  • 4
    粉丝
  • 0
    铁粉

个人简介:一个热爱嘻哈音乐的共产党员。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2018-10-03
博客简介:

qq_43332629的博客

查看详细资料
个人成就
  • 获得89次点赞
  • 内容获得17次评论
  • 获得165次收藏
创作历程
  • 3篇
    2022年
  • 1篇
    2021年
  • 7篇
    2020年
  • 6篇
    2019年
成就勋章
TA的专栏
  • pytorch
    3篇
  • 网络结构
    3篇
  • 参数优化
  • 剑指offer
  • C++
  • 力扣
  • python
    12篇
兴趣领域 设置
  • 编程语言
    qt
  • 人工智能
    深度学习pytorch图像处理
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python里面的.item()用法

python里面的.item()用法
原创
发布博客 2022.07.28 ·
2022 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

AttributeError: ‘DistributedDataParallel‘ object has no attribute ‘XXXX‘

AttributeError: 'DistributedDataParallel' object has no attribute 'xxxx'
原创
发布博客 2022.06.16 ·
7111 阅读 ·
11 点赞 ·
4 评论 ·
7 收藏

TypeError: torch.nn.modules.batchnorm.BatchNorm2d is not a Module subclass

改网络时遇到的问题:TypeError: torch.nn.modules.batchnorm.BatchNorm2d is not a Module subclasstorch.nn.modules.batchnorm.BatchNorm2d
原创
发布博客 2022.06.10 ·
844 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

TensorFlow中相关的维度处理函数

TensorFlow中相关的维度处理函数1——tf.tile(input, multiples, name=None)input: 定义好的的张量对象列表;multiples: 不同维度的复制次数,从第一个维度开始;name: 此操作的名称(可选)。a = tf.constant([[1,2],[3,4]],name='a') 输出:<tf.Tensor: shape=(2, 2), dtype=int32, numpy=array([[1, 2],[3, 4]], dtyp
原创
发布博客 2021.11.30 ·
199 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中[-1]、[:-1]、[::-1]、[1::-1]分别代表取哪些元素?

进入python,输入以下语句:import numpy as nna=[1,2,3,4,5]b=a[-1],相当于取最后一个元素>>> b=a[-1]>>> b5c=a[:-1],返回去除掉最后一个元素的其他值>>> c=a[:-1]>>> c[1, 2, 3, 4]d=a[::-1],返回numpy的元素倒序>>> d=a[::-1]>>> d[
原创
发布博客 2020.06.15 ·
4416 阅读 ·
1 点赞 ·
0 评论 ·
22 收藏

Linux下命令行找不到光标的情况

可以通过以下命令使得输入数据时,光标出现:echo -e "\033[?25h"想要隐藏光标的话:echo -e "\033[?25l"
原创
发布博客 2020.06.01 ·
1412 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

残差网络——Resnet的关键信息

Deep Residual Learning for Image Recognition论文链接:https://arxiv.org/abs/1512.03385残差块示意图:优点:1.引入残差后的映射对输出的变化更敏感;2.在前向传播时,输入信号可以从任意低层直接传播到高层。它包含了一个天然的恒等映射,一定程度上可以解决网络退化问题。错误信号可以不经过任何中间权重矩阵变换直接传播到低层,一定程度上可以缓解梯度弥散问题(即便中间层矩阵权重很小,梯度基本上也不会消失)。综上可以认为
原创
发布博客 2020.05.20 ·
258 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

如何判断张量(tensor)的维度呢?

利用python随机生成一个张量a=torch.randn(2,3,1)输出:基于上述数据可以得到以下观察,首先确定这是一个三维向量,这个可以根据最左边方括号([ )的数量来确定。那么它的形状必然是(a,b,c)的形式。看左边的第一个方括号([ )里面包含了几个元素,这里的元素是以([ ])为一组,因此a=2;再看第二个方括号([ )里包含了几个元素,这里的元素是以([ ])为一组,因此b=3;最后看第三个方括号([ )里面的元素个数,由于这是最后一维数据了,因此直接数这组括号里.
原创
发布博客 2020.05.13 ·
7116 阅读 ·
28 点赞 ·
6 评论 ·
49 收藏

深度学习——激活函数ReLu

通常意义下,线性整流函数指代数学中的斜坡函数,即其中是输入特征,经过线性变化之后的输出结果,比较其与0之间的大小关系,作为ReLu函数的输出优点:1. 解决了gradient vanishing问题 (在正区间);2.计算速度非常快,只需要判断输入是否大于0;3.收敛速度远快于sigmoid和tanh.缺点:1.ReLU的输出不是zero-centered;2.某些神经元可能永远不会被激活(Dead ReLU Problem),导致相应的参数永远不能被更新。有两个主要原因可
原创
发布博客 2020.05.12 ·
535 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习——激活函数sigmoid

激活函数是神经网络中能够产生非线性特质的一个根源,如果没有激活函数的存在,那么整个网络只剩下线性运算,线性运算的复合还仍然线性运算,最终的效果只相当于单层的线性模型。因此,激活函数是拟合一个预期数据分布的关键。1.sigmoid函数数学表达式如下:函数图像如下所示:特征:输入:正负均可(图示为-10~+10)输出(0,1)当输入极大或极小时,可以取到实数0和实数1.缺点:1.在深度神经网络中梯度反向传递时导致梯度爆炸或梯度消失,其中梯度爆炸发生的概率非常小,而梯度消失
原创
发布博客 2020.05.12 ·
2091 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习中关于过拟合问题的解决方案

防止过拟合的方法?定义:overfitting是指在模型参数拟合的过程中,由于训练数据包含抽样误差,训练时复杂的模型把抽样误差也考虑在内,对这些抽样误差也做了很好的拟合。表现:最终模型在训练集上表现好,在测试集上表现差。模型泛化能力弱。解决方案:1.获取更多的数据,让模型接触到尽可能多的可能性,模型在经过不断的修正之后,就会得到一个比较好的效果。(获取数据可以通过数据增强的方法,比如针对同一张图,进行镜像、缩放、平移和切割等方法)2.改进网络结构,减少网络层数、神经元的个数。3.选取
原创
发布博客 2020.05.11 ·
339 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

跑Yolo v3(pytorch)时遇到的问题

(1)RuntimeError: copy_if failed to synchronize: device-side assert triggered在yolo v3的代码中,没有背景类,去检查自己的数据集是否存在标签从1开始的情况,因此需要将起始类别标签设置为0(2)RuntimeError: CUDA error: device-side assert triggered检查数据集里面...
原创
发布博客 2019.11.21 ·
502 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

交叉熵、二分类损失函数的区别——nn.CrossEntropyLoss()、nn.BCELoss()和 nn.BCEWithLogitsLoss()

import torchimport torch.nn as nnimport mathentroy=nn.CrossEntropyLoss()input=torch.Tensor([[-0.7715, -0.6205,-0.2562]])target = torch.tensor([0])print(target)tensor([0])output = entroy(input...
原创
发布博客 2019.11.21 ·
3922 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Cornernet中关于解码函数(def _decode())的分析

#关于Cornernet当中解码的代码分析#def _decode( tl_heat, br_heat, tl_tag, br_tag, tl_regr, br_regr, K=100, kernel = 1, ae_threshold = 1, num_dets = 1000):#batch为batch_size,cat为训练集的类别数,height为用于预测的feat...
原创
发布博客 2019.10.30 ·
477 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

xml格式的数据集转coco格式的代码

原文链接在这里:https://blog.csdn.net/w113691/article/details/80817186?utm_source=blogxgwz2对部分信息进行了改动,希望能有帮助# -*- coding:utf-8 -*-# !/usr/bin/env pythonimport argparseimport jsonimport matplotlib.pyplo...
转载
发布博客 2019.10.30 ·
2522 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

python中关于数组的shape、size、ndim等信息

在这里,首先定义一个简单的二维数组,如下:>>> import numpy as np>>> a=np.array([[1,2],[3,4],[5,6]])>>> type(a)<type 'numpy.ndarray'>>>> a.shape(3, 2)>>> a.size6&...
原创
发布博客 2019.05.26 ·
4393 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

python--x.shape中(4,)与(4,1)的区别

进入python,我们输入以下语句import numpy as npa=np.array([0,1,2,3])b=np.array([[0],[1],[2],[3]])c=np.array([[0,1,2,3]])a.shape(4,)b.shape(4, 1)c.shape(1, 4)分析:a.shape说明数组a的维数是1,其中有4个元素...
原创
发布博客 2019.05.26 ·
14793 阅读 ·
32 点赞 ·
8 评论 ·
58 收藏
加载更多