分析:
(1)首先我们知道,当只有一个苹果,或者没有苹果,或只有一个盘子时,
只有一种方法。(2)当盘子的数量比苹果的多时(m > n), 那么就算是所有的盘子都放一个
苹果,还是会有空的盘子。这种情况等价于把 n 个苹果放入 n 个盘子。(3)当盘子的数量<=苹果的数量时(m <= n), 分两种情况考虑
<1>每个盘子都有,那么每个盘子至少有一个苹果,剩余的n-m个苹果
随便放。
<2>至少空一个盘子,即把n个苹果放入m-1个盘子中很入门的一道联系递归思想的题目
当然,所有的递归都能转换成递推,下面给出两种方法的代码
递归代码:
#include <iostream>
using namespace std;
// 把n个苹果分到m个盘子
int solve(int n, int m)
{
if (n==0||m==1||n==1)
return 1;
if (n < m)
return solve(n, n);
else
return solve(n-m, m) + solve(n, m-1);
}
int main()
{
int T, m , n;
cin >> T;
while(T--)
{
cin >> n >> m;
cout << solve(n,m) << endl;
}
return 0;
}
递推代码:
#include <iostream>
using namespace std;
// ans[i][j]表示i个苹果,j个盘子的答案
int ans[11][11];
void init()
{
for (int j = 0;j < 11; j++)
ans[0][j] = 1, ans[1][j] = 1, ans[j][1] = 1;
for (int i = 1; i < 11; i++)
{
for (int j = 1; j < 11; j++)
{
if (i==1||j==1) continue;
if (j > i) ans[i][j] = ans[i][i];
else ans[i][j] = ans[i-j][j]+ans[i][j-1];
}
}
}
int main()
{
init();
int T, m , n;
cin >> T;
while(T--)
{
cin >> n >> m;
cout << ans[n][m] << endl;
}
return 0;
}