高级实训任务二:图像分割

本文介绍了一次使用U-Net网络结构进行图像分割的高级实训任务,通过Tensorflow Keras框架处理data-science-bowl-2018数据集。U-Net是一种端到端的全卷积网络,结合了收缩和扩张路径,以保留图像的上下文信息。实验结果显示,经过10轮训练,模型在测试集上的准确度达到0.9536。
摘要由CSDN通过智能技术生成

实验内容

将卷积神经网络(CNN)应用在图像分割任务上,我们需要对网络结构进行设计。
本实验使用U-Net网络结构,Tensorflow Keras框架对data-science-bowl-2018数据集进行图像分割。

实验原理

U-Net的网络结构

在这里插入图片描述
U-Net是一个端到端的完全卷积编码网络,结构包含收缩路径(contracting path)和对称扩展路径(symmetric expanding path)。

输入模块I(64@568×568):

  • 输入(3@572×572):输入图像大小为572×572,三通道。
  • 卷积层I_C_1(64@570×570):使用64通道大小为3×3的卷积核对输入图像卷积计算得到64个大小为570×570的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层I_C1_2(64@568×568):使用64通道大小为3×3的卷积核对输入图像卷积计算得到64个大小为568×568的特征图。
  • ReLu:使用ReLU激活函数。

收缩模块C1(128@280×280):

  • MaxPooling(64@284×284):使用最大池化,池化单元的规格为2×2,步长为2,池化后的结果为64@284×284的特征图。
  • 卷积层C_C1_1(128@282×282):使用128通道大小为3×3的卷积核对输入图像卷积计算得到128个大小为282×282的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层C_C1_2(128@280×280):使用128通道大小为3×3的卷积核对输入图像卷积计算得到128个大小为280×280的特征图。
  • ReLu:使用ReLU激活函数。

收缩模块C2(256@136×136):

  • MaxPooling(128@140×140):使用最大池化,池化单元的规格为2×2,步长为2,池化后的结果为128@140×140的特征图。
  • 卷积层C_C2_1(256@138×138):使用256通道大小为3×3的卷积核对输入图像卷积计算得到256个大小为138×138的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层C_C2_2(256@136×136):使用256通道大小为3×3的卷积核对输入图像卷积计算得到256个大小为136×136的特征图。
  • ReLu:使用ReLU激活函数。

收缩模块C3(512@64×64):

  • MaxPooling(256@68×68):使用最大池化,池化单元的规格为2×2,步长为2,池化后的结果为256@68×68的特征图。
  • 卷积层C_C3_1(512@66×66):使用512通道大小为3×3的卷积核对输入图像卷积计算得到512个大小为66×66的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层C_C3_2(512@64×64):使用512通道大小为3×3的卷积核对输入图像卷积计算得到512个大小为64×64的特征图。
  • ReLu:使用ReLU激活函数。

收缩模块C4(1024@28×28)

  • MaxPooling(512@32×32):使用最大池化,池化单元的规格为2×2,步长为2,池化后的结果为512@32×32的特征图。
  • 卷积层C_C4_1(1024@30×30):使用1024通道大小为3×3的卷积核对输入图像卷积计算得到1024个大小为30×30的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层C_C4_2(1024@28×28):使用1024通道大小为3×3的卷积核对输入图像卷积计算得到1024个大小为28×28的特征图。
  • ReLu:使用ReLU激活函数。

扩张模块E4(512@52×52)

  • 上采样层E_TC_4(512@56×56):上采样使用转置卷积的方式,使用512个卷积核,转置卷积的卷积核大小为2×2,步长为2,得到512个大小为56×56的特征图。
  • 特征图拼接(Skip Connection)(1024@56×56):先将收缩模块C3的特征结果(大小为512@64×64)裁剪为512@56×56,再与上一步中上采样结果(512@56×56)进行拼接(通道叠加),得到1024@56×56。
  • 卷积层E_C4_1(512@54×54):使用512通道大小为3×3的卷积核对输入图像卷积计算得到512个大小为54×54的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层E_C4_2(512@52×52):使用512通道大小为3×3的卷积核对输入图像卷积计算得到512个大小为52×52的特征图。
  • ReLu:使用ReLU激活函数。

扩张模块E3(256@100×100)

  • 上采样层E_TC_3(256@104×104):上采样使用转置卷积的方式,使用256个卷积核,转置卷积的卷积核大小为2×2,步长为2,得到256个大小为104×104的特征图。
  • 特征图拼接(Skip Connection)(512@104×104):先将收缩模块C2的特征结果(大小为256@136×136)裁剪为256@104×104,再与上一步中上采样结果(256@104×104)进行拼接(通道叠加),得到512@104×104。
  • 卷积层E_C3_1(256@102×102):使用256通道大小为3×3的卷积核对输入图像卷积计算得到256个大小为102×102的特征图。
  • ReLu:使用ReLU激活函数。
  • 卷积层E_C3_2(256@100×100):使用256通道大小为3×3的卷积核对输入图像卷积计算得到256个大小为100×100的特征图。
  • ReLu:使用ReLU激活函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值