ABM: Ant

Definition

Model

  • Model is an abstracted description of a process, object, or event.
  • A computational model is a model that takes certain input values, manipulates those inputs in an algorithmic way, and generates outputs.
  • Model implementation refer to this process of transforming a textual model into a working computational simulation (written in some form of computer “ code ” ).

ABM(Agent-based Modeling)

  • Agent is an autonomous individual or object with particular properties, actions, and possibly goals.
  • Agent-based modeling (ABM) is a computational modeling paradigm that enables us to describe how any agent will behave.
  • The core idea of Agent-Based Modeling is that many (if not most) phenomena in the world can be effectively modeled with agents, an environment, and a description of agent-agent and agent-environment interactions.
    • The environment is the landscape on which agents interact and can be geometric, network-based, or drawn from real data.
    • The interactions occur between these agents or with the environment. Interactions are constituted by the exchange of information, result in agents’ updating their internal state or taking additional actions.
  • ABM is most useful when describing these phenomena as complex systems. Complex system means a system composed of many distributed interacting parts.

Ant Model

Description

When an ant finds a piece of food, it takes it back to the nest, dropping pheromone as it moves. When other ants “smell” the pheromone, they follow the pheromone toward the food.

Creating the Ant Foraging Model

If not carrying-food? [ look-for-food ] ;; if not carrying food, look for it
if carrying-food? [ move-towards-nest ] ;; if carrying food turn back towards the nest
wander ;; turn a small random amount and move forward

Parameters

  • POPULATION
  • DIFFUSION-RATE
  • EVAPORATION-RATE
  1. How does the evaporation rate affect the ability of the ants to form trails to the food? What happens if there is no evaporation?
    If there is no evaporation, the path randomly chosen by the first ants will become the preferred path due to the attraction of other ants by their pheromone.
  2. How does the rate of diffusion affect the kind of trails the ants form?
  3. How does the number of ants affect the colony ’ s ability to consume the food?

Results and Observations

  • As more and more ants find the food source, the pheromone trail will become stronger and stronger. Eventually, the actions of many ants will create a strong pheromone trail from the nest to the food source, and so any ant can easily find the trail to the food source.
  • Ants first gather food from the nearest food source, then the second nearest, and so on.

What Good Is an Ant Model?

	8 uses for agent-based models
	- description
	- explanation
	- experimentation
	- providing sources of analogy
	- communication/education
	- providing focal objects or centerpieces for scientific dialogue
	- as thought experiments
	- prediction
  • It provides a visualization of one particular textual model.
  • A model is descriptive of a real-world system. It is a simplification of the real world.
  • Models are explanatory in that they point out the essential mechanisms underlying a phenomenon. They can function as a proof that hypothesized mechanisms are sufficient to account for an observation. Models provide us with a proof of concept that something is possible.
  • Models facilitate experimentation.
  • Models provide us with analogies.
  • Agent-based models can be used as a vehicle for communication and education.
  • Models can sometimes present new phenomena that are not necessarily about some real-world phenomenon, but are thought experiments on possible computations.

The Modelling Cycle

在这里插入图片描述

The modeling cycle describes an iterative sequence of steps involved in designing, impletementing and applying a model.

  1. Formulate the question: specify a clear research question;
  2. Assemble hypotheses for essential processes and structures (start simple and add details later);
  3. Choose Scales, entities, state variables, processes and parameters (translate hypotheses into equations, rules or algorithms);
  4. Implement the model (written model into a “simulation”);
  5. Analyse, test and revise the model
  6. Communicate the model

relevant link

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值