高级实训
文章平均质量分 81
XXXT805
这个作者很懒,什么都没留下…
展开
-
高级实训任务二:图像分割
实验内容将卷积神经网络(CNN)应用在图像分割任务上,我们需要对网络结构进行设计。本实验使用U-Net网络结构对 数据集进行医疗图像分割。实验原理U-Net的网络结构U-Net是一个端到端的完全卷积编码网络,结构包含收缩路径(contracting path)和对称扩展路径(symmetric expanding path)。收缩路径是典型的卷积编码网络,每一层卷积核大小是3x3,并通过一个ReLU和2x2的最大池化操作组成一次下采样。每一个下采样后将特征通道数加倍。扩展路径每一层对特征映射进行原创 2022-01-22 11:38:05 · 2246 阅读 · 0 评论 -
高级实训任务三:文本情感分类
实验内容将循环任务(RNN)应用在图像分割任务上,我们需要对网络结构进行设计。本实验使用LSTM的网络结构,TensorFlow框架对 数据集进行文本情感分类(正向、负向)。实验原理RNN(循环神经网络)RNN是一种特殊的神经网络结构, 它是根据"人的认知是基于过往的经验和记忆"这一观点提出的. 它与DNN,CNN不同的是: 它不仅考虑前一时刻的输入,而且赋予了网络对前面的内容的一种’记忆’功能.RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的原创 2022-01-21 13:26:25 · 642 阅读 · 0 评论 -
高级实训任务一:基于CNN及其变体的图像分类
实验内容卷积神经网络(CNN)因为其能够自动抽取图像的浅层到深层的特征,所以在近几年有许多应用。实验尝试使用深度学习框架Tensorflow,用AlexNet、GoogleNet、ResNet两种CNN来对MNIST手写数据集进行图像分类。实验原理AlexNetAlexNet总共包含8层,其中有5个卷积层和3个全连接层,有60M个参数,神经元个数为650k,分类数目为1000,LRN层出现在第一个和第二个卷积层后面,最大池化层出现在两个LRN层及最后一个卷积层后。第一层输入图像规格为22722原创 2021-10-01 00:34:05 · 788 阅读 · 0 评论 -
Tensorflow2.0安装
安装Anaconda官网下载:https://www.anaconda.com/products/individual创建虚环境conda create -n tensorflow(env_name) pyhton=3.7conda activate //激活虚环境conda deactivate //退出虚环境常用命令安装tensorflowconda install cudatoolkit=10.1conda install cudnn=7.6pip install tensorf原创 2021-09-30 02:07:44 · 116 阅读 · 0 评论
分享