LongAdder源码剖析

前言

LongAdder与AtomicLong是高并发下常用的计数器。学习ConcurrentHashMap源码之前,有必要掌握LongAdder与HashMap源码的实现。学习LongAdder的源码,推荐观看小刘老师b站的视频:JDK8 新特性LongAdder源码深度讲解,保证让你学到很多硬核知识!,看完之后感觉确实很硬。复习的时候,可以参考这篇壹枝花大佬写的好文:面试官问我LongAdder,我惊了…,花大佬写的这篇文章,解决了我很多困惑,写的真的太好了。这篇文章是对花大佬文章的转载。

一、思维导图

在这里插入图片描述

二、volatile、AtomicLong与LongAdder

在这里插入图片描述

对于Java项目中计数统计的一些需求,如果是 JDK8,推荐使用 LongAdder 对象,比 AtomicLong 性能更好(减少乐观锁的重试次数)

在大多数项目及开源组件中,计数统计使用最多的仍然还是AtomicLong,虽然是阿里巴巴这样说,但是我们仍然要根据使用场景来决定是否使用LongAdder

三、问题

  • 为什么AtomicLong在高并发场景下性能急剧下降?
  • LongAdder为什么快?
  • LongAdder实现原理(图文分析)
  • AtomicLong是否可以被遗弃或替换?

四、AtomicLong

当我们在进行计数统计的时,通常会使用AtomicLong来实现。AtomicLong能保证并发情况下计数的准确性,其内部通过CAS来解决并发安全性的问题。

1.AtomicLong实现原理

说到线程安全的计数统计工具类,肯定少不了Atomic下的几个原子类。AtomicLong就是juc包下重要的原子类,在并发情况下可以对长整形类型数据进行原子操作,保证并发情况下数据的安全性

public class AtomicLong extends Number implements java.io.Serializable {
    public final long incrementAndGet() {
        return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L;
    }

    public final long decrementAndGet() {
        return unsafe.getAndAddLong(this, valueOffset, -1L) - 1L;
    }
}

我们在计数的过程中,一般使用incrementAndGet()decrementAndGet()进行加一和减一操作,这里调用了Unsafe类中的getAndAddLong()方法进行操作。

接着看看unsafe.getAndAddLong()方法:

public final class Unsafe {
    public final long getAndAddLong(Object var1, long var2, long var4) {
         long var6;
         do {
             var6 = this.getLongVolatile(var1, var2);
         } while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4));
 
         return var6;
     }

    public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);
}

这里直接进行CAS+自旋操作更新AtomicLong中的value值,进而保证value值的原子性更新

2.AtomicLong瓶颈分析

如上代码所示,我们在使用CAS + 自旋的过程中,在高并发环境下,N个线程同时进行自旋操作,会出现大量失败并不断自旋的情况,此时AtomicLong的自旋会成为瓶颈。

在这里插入图片描述

如上图所示,高并发场景下AtomicLong性能会急剧下降,我们后面也会举例说明。

那么高并发下计数的需求有没有更好的替代方案呢?在JDK8Doug Lea大神 新写了一个LongAdder来解决此问题,我们后面来看LongAdder是如何优化的。

五、LongAdder

1.LongAdder和AtomicLong性能测试

我们说了很多LongAdder上性能优于AtomicLong,到底是不是呢?一切还是以代码说话:

/**
 * Atomic和LongAdder耗时测试
 *
 * @author:一枝花算不算浪漫
 *
 */
public class AtomicLongAdderTest {
     public static void main(String[] args) throws Exception{
        testAtomicLongAdder(1, 10000000);
        testAtomicLongAdder(10, 10000000);
        testAtomicLongAdder(100, 10000000);
    }

    static void testAtomicLongAdder(int threadCount, int times) throws Exception{
        System.out.println("threadCount: " + threadCount + ", times: " + times);
        long start = System.currentTimeMillis();
        testLongAdder(threadCount, times);
        System.out.println("LongAdder 耗时:" + (System.currentTimeMillis() - start) + "ms");
        System.out.println("threadCount: " + threadCount + ", times: " + times);
        
        long atomicStart = System.currentTimeMillis();
        testAtomicLong(threadCount, times);
        System.out.println("AtomicLong 耗时:" + (System.currentTimeMillis() - atomicStart) + "ms");
        System.out.println("----------------------------------------");
    }

    static void testAtomicLong(int threadCount, int times) throws Exception{
        AtomicLong atomicLong = new AtomicLong();
        List<Thread> list = Lists.newArrayList();
        for (int i = 0; i < threadCount; i++) {
            list.add(new Thread(() -> {
                for (int j = 0; j < times; j++) {
                    atomicLong.incrementAndGet();
                }
            }));
        }

        for (Thread thread : list) {
            thread.start();
        }

        for (Thread thread : list) {
            thread.join();
        }

        System.out.println("AtomicLong value is : " + atomicLong.get());
    }

    static void testLongAdder(int threadCount, int times) throws Exception{
        LongAdder longAdder = new LongAdder();
        List<Thread> list = Lists.newArrayList();
        for (int i = 0; i < threadCount; i++) {
            list.add(new Thread(() -> {
                for (int j = 0; j < times; j++) {
                    longAdder.increment();
                }
            }));
        }

        for (Thread thread : list) {
            thread.start();
        }

        for (Thread thread : list) {
            thread.join();
        }

        System.out.println("LongAdder value is : " + longAdder.longValue());
    }
}

执行结果:

在这里插入图片描述

这里可以看到随着并发的增加,AtomicLong性能是急剧下降的,耗时是LongAdder的数倍。至于原因我们还是接着往后看。

2.LongAdder为什么这么快

先看下LongAdder的操作原理图:

在这里插入图片描述

既然说到LongAdder可以显著提升高并发环境下的性能,那么它是如何做到的?

1)设计思想上,LongAdder采用"分段"的方式降低CAS失败的频次。

这里先简单的说下LongAdder的思路,后面还会详述LongAdder的原理。

我们知道,AtomicLong中有个内部变量value保存着实际的long值,所有的操作都是针对该变量进行。也就是说,高并发环境下,value变量其实是一个热点数据,也就是N个线程竞争一个热点

LongAdder的基本思路就是分散热点,将value值的新增操作分散到一个数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个value值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。

LongAdder有一个全局变量volatile long base值,当并发不高的情况下都是通过CAS来直接操作base值,如果CAS失败,则针对LongAdder中的Cell[]数组中的Cell进行CAS操作,减少失败的概率。

例如当前类中base = 10,有三个线程进行CAS原子性的**+1操作**,线程一 执行成功,此时base=11线程二、线程三执行失败后开始针对于Cell[]数组中的Cell元素进行**+1操作**,同样也是CAS操作,此时数组index=1index=2Cellvalue都被设置为了1.

执行完成后,统计累加数据:sum = 11 + 1 + 1 = 13,利用LongAdder进行累加的操作就执行完了,流程图如下:

在这里插入图片描述

分段加锁思路图

如果要获取真正的long值,只要将各个槽中的变量值累加返回。这种分段的做法类似于JDK7ConcurrentHashMap的分段锁。

2)使用Contended注解来消除伪共享

LongAdder 的父类 Striped64 中存在一个 volatile Cell[] cells; 数组,其长度是2 的幂次方,每个Cell都使用 @Contended 注解进行修饰,而@Contended注解可以进行缓存行填充,从而解决伪共享问题。伪共享会导致缓存行失效,缓存一致性开销变大。

伪共享:在程序运行的过程中,缓存每次更新都从主内存中加载连续的64个字节。因此,如果访问一个long类型的数组时,当数组(链表不会)中的一个值被加载到缓存中时,另外7个元素也会被加载到缓存中伪共享指的是多个线程同时读写同一个缓存行的不同变量时导致的 CPU缓存失效

img

@sun.misc.Contended static final class Cell {

}

Striped64类中我们可以看看Doug LeaCell上加的注释也有说明这一点:

在这里插入图片描述

红框中的翻译如下:

Cell类是AtomicLong添加了padded(via@sun.misc.compended)来消除伪共享的变种版本。缓存行填充对于大多数原子来说是繁琐的,因为它们通常不规则地分散在内存中,因此彼此之间不会有太大的干扰。但是,驻留在数组中的原子对象往往彼此相邻,因此在没有这种预防措施的情况下,通常会共享缓存行数据(对性能有巨大的负面影响)。

3)惰性求值

LongAdder只有在使用longValue()获取当前累加值时才会真正的去结算计数的数据,longValue()方法底层就是调用sum()方法,对baseCell数组的数据累加然后返回,做到数据写入和读取分离。

AtomicLong使用incrementAndGet()每次都会返回long类型的计数值,每次递增后还会伴随着数据返回,增加了额外的开销。

3.LongAdder实现原理

之前说了,AtomicLong是多个线程针对单个热点值value进行原子操作。而LongAdder是每个线程拥有自己的槽,各个线程一般只对自己槽中的那个值进行CAS操作

比如有三个线程同时对value增加1,那么value = 1 + 1 + 1 = 3

但是对于LongAdder来说,内部有一个base变量,一个Cell[]数组。

base变量:非竞争条件下,直接累加到该变量上
Cell[]数组:竞争条件下,累加个各个线程自己的槽Cell[i]中

最终结果的计算是下面这个形式:
v a l u e = b a s e + ∑ n i = n C e l l [ i ] value=base+\sum_{n}^{i=n} {Cell[i]} value=base+ni=nCell[i]

4.LongAdder源码分析

前面已经用图分析了LongAdder高性能的原理,我们继续看下LongAdder实现的源码:

public class LongAdder extends Striped64 implements Serializable {
    
    public void increment() {
        add(1L);
    }

    public void add(long x) {
        Cell[] as; long b, v; int m; Cell a;
        
        //1.true->表示cells已经初始化过了,当前线程应该将数据写入到对应的cell中
        //2.true->表示发生竞争了,竞争失败了,可能需要重试 或者 扩容
        if ((as = cells) != null || !casBase(b = base, b + x)) {
            boolean uncontended = true;
            // 条件一 as == null || (m = as.length - 1) < 0 成立说明 cells数组未初始化
            // 条件二成立说明 当前线程通过hash计算出来数组位置处的cell为空
        	// 条件三成立说明 当前线程hash与数组长度取模计算出的位置的cell有值,此时直接尝试一次CAS操作
            if (as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null ||
                !(uncontended = a.cas(v = a.value, v + x)))
                // 三个参数第一个为要累加的值,第二个为null,第三个为wasUncontended表示调用方法之前的add方法是否未发生竞争
                longAccumulate(x, null, uncontended);
        }
    }

    final boolean casBase(long cmp, long val) {
        return UNSAFE.compareAndSwapLong(this, BASE, cmp, val);
    }
    
}

一般我们进行计数时都会使用increment()方法,每次进行**+1操作**,increment()会直接调用add()方法。

1)变量说明
  • as 表示cells数组引用
  • b 表示获取的base值
  • v 表示 期望值
  • m 表示 cells 数组的长度
  • a 表示当前线程命中的cell单元格
2)add()方法条件分析

条件一:as == null || (m = as.length - 1) < 0

此条件成立说明cells数组未初始化。如果不成立则说明cells数组已经完成初始化,对应的线程需要找到Cell数组中的元素去写值。

在这里插入图片描述

条件二:(a = as[getProbe() & m]) == null
getProbe()获取当前线程的hash值,m表示cells长度-1,cells长度是2的幂次方数,原因之前也讲到过,与数组长度取模可以转化为按位与运算,提升计算性能。

当条件成立时说明当前线程通过hash计算出来数组位置处的cell为空,进一步去执行longAccumulate()方法。如果不成立则说明对应的cell不为空,下一步将要将x值通过CAS操作添加到cell中。

条件三:!(uncontended = a.cas(v = a.value, v + x)
主要看a.cas(v = a.value, v + x),接着条件二,说明当前线程hash与数组长度取模计算出的位置的cell有值,此时直接尝试一次CAS操作,如果成功则退出if条件,失败则继续往下执行longAccumulate()方法。

在这里插入图片描述

条件二、条件三实现图

3)longAccumulate()方法分析

接着往下看核心的longAccumulate()方法,代码很长,后面会一步步分析,先上代码:

java.util.concurrent.atomic.Striped64.:

//前提:
//条件一、二 说明 cells 未初始化,也就是多线程写base发生竞争了[重试|初始化cells]
//条件三 说明当前线程对应下标的cell为空,需要创建 longAccumulate 支持
//条件四 表示cas失败,意味着当前线程对应的cell 有竞争[重试|扩容]
//参数:第一个为要累加的值,第二个为null,第三个为wasUncontended表示调用方法之前的add方法是否未发生竞争
final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) {
    //h 表示线程hash值
    int h;
    //条件成立:说明当前线程 还未分配hash值
    if ((h = getProbe()) == 0) {
        //给当前线程分配hash值
        ThreadLocalRandom.current(); // force initialization
        //取出当前线程的hash值 赋值给h
        h = getProbe();
        //为什么? 因为默认情况下 当前线程 肯定是写入到了 cells[0] 位置。 不把它当做一次真正的竞争
        wasUncontended = true;
    }

    //表示扩容意向 false 一定不会扩容,true 可能会扩容。
    boolean collide = false;                // True if last slot nonempty

    //自旋
    for (;;) {
        //as 表示cells引用
        //a 表示当前线程命中的cell
        //n 表示cells数组长度
        //v 表示 期望值
        Cell[] as; Cell a; int n; long v;

        //CASE1: 表示cells已经初始化了,当前线程应该将数据写入到对应的cell中
        if ((as = cells) != null && (n = as.length) > 0) {
            //2.true-> 说明当前线程对应下标的cell为空,需要创建 longAccumulate 支持
            //3.true->表示cas失败,意味着当前线程对应的cell 有竞争[重试|扩容]

            //CASE1.1:true->表示当前线程对应的下标位置的cell为null,需要创建new Cell
            if ((a = as[(n - 1) & h]) == null) {

                //true->表示当前锁 未被占用  false->表示锁被占用
                if (cellsBusy == 0) {       // Try to attach new Cell

                    //拿当前的x创建Cell
                    Cell r = new Cell(x);   // Optimistically create

                    //条件一:true->表示当前锁 未被占用  false->表示锁被占用
                    //条件二:true->表示当前线程获取锁成功  false->当前线程获取锁失败..
                    if (cellsBusy == 0 && casCellsBusy()) {
                        //是否创建成功 标记
                        boolean created = false;
                        try {               // Recheck under lock
                            //rs 表示当前cells 引用
                            //m 表示cells长度
                            //j 表示当前线程命中的下标
                            Cell[] rs; int m, j;

                            //条件一 条件二 恒成立
                            //rs[j = (m - 1) & h] == null 为了防止其它线程初始化过 该位置,
                            //然后当前线程再次初始化该位置。导致丢失数据
                            if ((rs = cells) != null &&
                                (m = rs.length) > 0 &&
                                rs[j = (m - 1) & h] == null) {
                                rs[j] = r;
                                created = true;
                            }
                        } finally {
                            cellsBusy = 0;
                        }
                        if (created)
                            break;
                        continue;           // Slot is now non-empty
                    }
                }

                //扩容意向 强制改为了false
                collide = false;
            }
            // CASE1.2:
            // wasUncontended:只有cells初始化之后,并且当前线程 竞争修改失败,才会是false
            else if (!wasUncontended)       // CAS already known to fail
                wasUncontended = true;      // Continue after rehash
            //CASE 1.3:当前线程rehash过hash值,然后新命中的cell不为空
            //true -> 写成功,退出循环
            //false -> 表示rehash之后命中的新的cell 也有竞争 重试1次 再重试1次
            else if (a.cas(v = a.value, ((fn == null) ? v + x :
                                         fn.applyAsLong(v, x))))
                break;
            //CASE 1.4:
            //条件一:n >= NCPU true->扩容意向 改为false,表示不扩容了  
            		        // false-> 说明cells数组还可以扩容
            //条件二:cells != as true->其它线程已经扩容过了,当前线程rehash之后重试即可
            else if (n >= NCPU || cells != as)
                //扩容意向 改为false,表示不扩容了
                collide = false;            // At max size or stale
            //CASE 1.5:
            //!collide = true 设置扩容意向 为true 但是不一定真的发生扩容
            else if (!collide)
                collide = true;
            //CASE 1.6:真正扩容的逻辑
            //条件一:cellsBusy == 0 true->表示当前无锁状态,当前线程可以去竞争这把锁
            //条件二:casCellsBusy true->表示当前线程 获取锁 成功,可以执行扩容逻辑
            // false->表示当前时刻有其它线程在做扩容相关的操作。
            else if (cellsBusy == 0 && casCellsBusy()) {
                try {
                    //cells == as
                    if (cells == as) {      // Expand table unless stale
                        Cell[] rs = new Cell[n << 1];
                        for (int i = 0; i < n; ++i)
                            rs[i] = as[i];
                        cells = rs;
                    }
                } finally {
                    //释放锁
                    cellsBusy = 0;
                }
                collide = false;
                continue;                   // Retry with expanded table
            }

            //重置当前线程Hash值
            h = advanceProbe(h);
        }
        //CASE2:前置条件cells还未初始化 as 为null
        //条件一:true 表示当前未加锁
        //条件二:cells == as?因为其它线程可能会在你给as赋值之后修改了 cells
        //条件三:true 表示获取锁成功 会把cellsBusy = 1,false 表示其它线程正在持有这把锁
        else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
            boolean init = false;
            try {                           // Initialize table
                //cells == as? 防止其它线程已经初始化了,当前线程再次初始化 导致丢失数据
                if (cells == as) {
                    Cell[] rs = new Cell[2];
                    rs[h & 1] = new Cell(x);
                    cells = rs;
                    init = true;
                }
            } finally {
                cellsBusy = 0;
            }
            if (init)
                break;
        }
        //CASE3:
        //1.当前cellsBusy加锁状态,表示其它线程正在初始化cells,所以当前线程将值累加到base
        //2.cells被其它线程初始化后,当前线程需要将数据累加到base
        else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
            break;                          // Fall back on using base
    }
}

代码很长,if else分支很多,初次看肯定会很头疼。这里一点点分析,然后结合画图一步步了解其中实现原理。

a.调用longAccumulate()方法的前提:

首先要清楚执行这个方法的前置条件,它们是或的关系,如上面条件一、二、三:

  1. cells数组没有初始化
  2. cells数组已经初始化,但是当前线程对应的cell数据为空
  3. cells数组已经初始化, 当前线程对应的cell数据为空,且CAS操作+1失败
b.longAccumulate()方法的入参:
  • long x 需要增加的值,一般默认都是1
  • LongBinaryOperator fn 默认传递的是null
  • wasUncontended竞争标识,如果是false则代表有竞争。只有cells初始化之后,并且当前线程CAS竞争修改失败,才会是false
c.Striped64中一些变量或者方法的定义:
  • base: 类似于AtomicLong中全局的value值。在没有竞争情况下数据直接累加到base上,或者cells扩容时,也需要将数据写入到base上
  • collide:表示扩容意向,false 一定不会扩容,true可能会扩容
  • cellsBusy:初始化cells或者扩容cells需要获取锁,0:表示无锁状态 1:表示其他线程已经持有了锁
  • casCellsBusy():通过CAS操作修改cellsBusy的值,CAS成功代表获取锁,返回true
  • NCPU:当前计算机CPU数量,Cell数组扩容时会使用到
  • getProbe(): 获取当前线程的hash值
  • advanceProbe(): 重置当前线程的hash值

六、longAccumulate()源码解析

1.Probe变量
private static final long PROBE;

//longAccumulate()方法内部的判断
//条件成立:说明当前线程 还未分配hash值
if ((h = getProbe()) == 0) {
    //给当前线程分配hash值
    ThreadLocalRandom.current();
    h = getProbe();
    //重新计算了当前线程的`hash`后认为此次不算是一次竞争
    wasUncontended = true;
}

// 获取当前线程的Hash值
static final int getProbe() {
    return UNSAFE.getInt(Thread.currentThread(), PROBE);
}

上面说过getProbe()方法是为了获取当前线程的hash值,具体实现是通过UNSAFE.getInt()实现的,PROBE是在初始化时候获取当前线程threadLocalRandomProbe的值。

注:Unsafe.getInt()有三个重载方法getInt(Object o, long offset)getInt(long address)getIntVolatile(long address),都是从指定的位置获取变量的值,只不过第一个的offset是相对于对象o的相对偏移量,第二个address是绝对地址偏移量。如果第一个方法中o为null是,offset也会被作为绝对偏移量。第三个则是带有volatile语义的load读操作。

如果当前线程的hash值h=getProbe()为0,0与任何数取模都是0,会固定到数组第一个位置,所以这里做了优化,使用ThreadLocalRandom为当前线程重新计算一个hash值。最后设置wasUncontended = true,这里含义是重新计算了当前线程的hash后认为此次不算是一次竞争。hash值被重置就好比一个全新的线程一样,所以设置了竞争状态为true

画图理解:

在这里插入图片描述

2.for循环分析

接着执行for循环,我们可以把for循环代码拆分一下,每个if条件算作一个CASE来分析:

final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) {

    for (;;) {
        Cell[] as; Cell a; int n; long v;
        //CASE1: 表示cells已经初始化了,当前线程应该将数据写入到对应的cell中
        if ((as = cells) != null && (n = as.length) > 0) {

        }
        //CASE2:前置条件cells还未初始化 as 为null
        //条件一:true 表示当前未加锁
        //条件二:cells == as?因为其它线程可能会在你给as赋值之后修改了 cells
        //条件三:true 表示获取锁成功 会把cellsBusy = 1,false 表示其它线程正在持有这把锁
        else if (cellsBusy == 0 && cells == as && casCellsBusy()) {

        }
        //CASE3:
        //1.当前cellsBusy加锁状态,表示其它线程正在初始化cells,所以当前线程将值累加到base
        //2.cells被其它线程初始化后,当前线程需要将数据累加到base
        else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))

    }
}

如上所示,第一个if语句代表CASE1,里面再有if判断会以CASE1.1这种形式来讲解,下面接着的else ifCASE2, 最后一个为CASE3

1)CASE1执行条件
if ((as = cells) != null && (n = as.length) > 0) {

}

cells数组不为空,且数组长度大于0的情况会执行CASE1CASE1的实现细节代码较多,放到最后面讲解。

2)CASE2执行条件和实现原理
//CASE2:前置条件cells还未初始化 as 为null
//条件一:true 表示当前未加锁
//条件二:cells == as 代表当前线程到了这里获取的`cells`还是之前的一致
//条件三:true 表示获取锁成功 会把cellsBusy = 1,false 表示其它线程正在持有这把锁
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
    boolean init = false;
        try {
            //再次判断 cells == as 防止其它线程已经初始化了,当前线程再次初始化 导致丢失数据 类似单例模式的DCL
            if (cells == as) {
                Cell[] rs = new Cell[2];
                rs[h & 1] = new Cell(x);
                cells = rs;
                init = true;
            }
        } finally {
            cellsBusy = 0;
        }
        if (init)
            break;
}

CASE2 标识cells数组还未初始化,因为判断cells == as,这个代表当前线程到了这里获取的cells还是之前的一致。我们可以先看这个case,最后再回头看最为麻烦的CASE1实现逻辑。

cellsBusy上面说了是加锁的状态,初始化cells数组和扩容的时候都要获取加锁的状态,这个是通过CAS来实现的,为0代表无锁状态,为1代表其他线程已经持有锁了。cells==as代表当前线程持有的数组未进行修改过,casCellsBusy()通过CAS操作去获取锁。但是里面的if条件又再次判断了cell==as,这一点是不是很奇怪?通过画图来说明下问题:

在这里插入图片描述

cells==as双重判断说明图

如果上面条件都执行成功就会执行数组的初始化及赋值操作, Cell[] rs = new Cell[2]表示数组的长度为2,rs[h & 1] = new Cell(x) 表示创建一个新的Cell元素value是x值,默认为1

h & 1类似于之前HashMap或者ThreadLocal里面经常用到的计算散列桶index的算法,通常都是hash & (table.len - 1),这里就不做过多解释了。执行完成后直接退出for循环

3)CASE3执行条件和实现原理
//CASE3:
//1.当前cellsBusy加锁状态,表示其它线程正在初始化cells,所以当前线程将值累加到base
//2.cells被其它线程初始化后,当前线程需要将数据累加到base
else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
    break;

进入到这里说明cells正在或者已经初始化过了,执行caseBase()方法,通过CAS操作来修改base的值,如果修改成功则跳出循环,这个CAS E只有在初始化Cell数组的时候,多个线程尝试CAS修改cellsBusy加锁的时候,失败的线程会走到这个分支,然后直接CAS修改base数据。

4)CASE1执行条件和实现原理

分析完了CASE2和CASE3,我们再折头回看一下CASE1,进入CASE1的前提是:cells数组不为空,已经完成了初始化赋值操作。

接着还是一点点往下拆分代码,首先看第一个判断分支CASE1.1

//CASE1.1:true->表示当前线程对应的下标位置的cell为null,需要创建new Cell
if ((a = as[(n - 1) & h]) == null) {

    //true->表示当前锁 未被占用  false->表示锁被占用
    if (cellsBusy == 0) {       // Try to attach new Cell

        //拿当前的x创建Cell
        Cell r = new Cell(x);   // Optimistically create

        //条件一:true->表示当前锁 未被占用  false->表示锁被占用
        //条件二:true->表示当前线程获取锁成功  false->当前线程获取锁失败..
        if (cellsBusy == 0 && casCellsBusy()) {
            //是否创建成功 标记
            boolean created = false;
            try { // Recheck under lock
                //rs 表示当前cells 引用
                //m 表示cells长度
                //j 表示当前线程命中的下标
                Cell[] rs; int m, j;

                //条件一 条件二 恒成立
                //rs[j = (m - 1) & h] == null 为了防止其它线程初始化过 该位置,然后当前线程再次初始化该位置 导致丢失数据
                if ((rs = cells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) {
                    rs[j] = r;
                    created = true;
                }
            } finally {
                cellsBusy = 0;
            }
            
            if (created)
               break;
            continue;           // Slot is now non-empty
        }
        
    }
    
    //扩容意向 强制改为了false
    collide = false;
}

//重置当前线程Hash值
h = advanceProbe(h);

这个if条件中(a = as[(n - 1) & h]) == null代表当前线程对应的数组下标位置的cell数据为null,代表没有线程在此处创建Cell对象。

接着判断cellsBusy==0,代表当前锁未被占用。然后新创建Cell对象,接着又判断了一遍cellsBusy == 0,然后执行casCellsBusy()尝试通过CAS操作修改cellsBusy=1,加锁成功后修改扩容意向collide = false;

for (;;) {
    if ((rs = cells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) {
        rs[j] = r;
        created = true;
    }
 
    if (created)
        break;
    continue;
}

上面代码判断当前线程hash后指向的数据位置元素是否为空,如果为空则将cell数据放入数组中,跳出循环。如果不为空则继续循环。

在这里插入图片描述

CASE1.1流程图

继续往下看代码,CASE1.2

 // CASE1.2:
// wasUncontended:只有cells初始化之后,并且当前线程 竞争修改失败,才会是false
else if (!wasUncontended)       // CAS already known to fail
    wasUncontended = true;      // Continue after rehash

//重置当前线程Hash值
h = advanceProbe(h);

wasUncontended表示cells初始化后,当前线程竞争某一cell槽口,修改失败

wasUncontended = false,这里只是重新设置了这个值为true,紧接着执行

advanceProbe(h)重置当前线程的hash,重新循环。s

接着看CASE1.3

//CASE 1.3:当前线程rehash过hash值,然后新命中的cell不为空
//true -> 写成功,退出循环
//false -> 表示rehash之后命中的新的cell 也有竞争 重试1次 再重试1次
else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
    break;

进入CASE1.3说明当前线程对应的数组中有了数据,也重置过hash值,这时通过CAS操作尝试对当前数中的value值进行累加x操作,x默认为1,如果CAS成功则直接跳出循环。

在这里插入图片描述

CASE1.3流程图

接着看CASE1.4

//CASE 1.4:
//条件一:n >= NCPU true->扩容意向 改为false,表示不扩容了  false-> 说明cells数组还可以扩容
//条件二:cells != as true->其它线程已经扩容过了,当前线程rehash之后重试即可
else if (n >= NCPU || cells != as)
    //扩容意向 改为false,表示不扩容了
    collide = false;            // At max size or stale

如果cells数组的长度达到了CPU核心数,或者cells扩容了,设置扩容意向collidefalse并通过下面的h = advanceProbe(h)方法修改线程的probe再重新尝试

至于这里为什么要提出和CPU数量做判断的问题:每个线程会通过线程对cells[threadHash%cells.length]位置的Cell对象中的value做累加,这样相当于将线程绑定到了cells中的某个cell对象上,如果超过CPU数量的时候就不再扩容是因为CPU的数量代表了机器处理能力,当超过CPU数量时,多出来的cells数组元素没有太大作用。

在这里插入图片描述

多线程更新Cell

接着看CASE1.5

//CASE 1.5:
//!collide = true 设置扩容意向 为true 但是不一定真的发生扩容
else if (!collide)
    collide = true;

如果扩容意向collidefalse则修改它为true,然后重新计算当前线程的hash值继续循环,在CASE1.4中,如果当前数组的长度已经大于了CPU的核数,就会再次设置扩容意向collide=false,这里的意义是保证扩容意向为false后不再继续往后执行CASE1.6的扩容操作。

接着看CASE1.6分支

//CASE 1.6:真正扩容的逻辑
//条件一:cellsBusy == 0 true->表示当前无锁状态,当前线程可以去竞争这把锁
//条件二:casCellsBusy true->表示当前线程 获取锁 成功,可以执行扩容逻辑
// 					 false->表示当前时刻有其它线程在做扩容相关的操作。
else if (cellsBusy == 0 && casCellsBusy()) {
    try {
        //cells == as
        if (cells == as) {      // Expand table unless stale
            Cell[] rs = new Cell[n << 1];
            for (int i = 0; i < n; ++i)
                rs[i] = as[i];
            cells = rs;
        }
    } finally {
        //释放锁
        cellsBusy = 0;
    }
    collide = false;
    continue;                   // Retry with expanded table
}

这里面执行的其实是扩容逻辑,首先是判断通过CAS改变cellsBusy来尝试加锁,如果CAS成功则代表获取锁成功,继续向下执行,判断当前的cells数组和最先赋值的as是同一个,代表没有被其他线程扩容过,然后进行扩容,扩容大小为之前的容量的两倍,这里用的按位左移1位来操作的。

Cell[] rs = new Cell[n << 1];

扩容后再将之前数组的元素拷贝到新数组中,释放锁设置cellsBusy = 0,设置扩容状态,然后继续循环执行。

到了这里,我们已经分析完了longAccumulate()所有的逻辑,逻辑分支挺多,仔细分析看看其实还是挺清晰的,流程图如下:

在这里插入图片描述

总的流程图

我们再举一些线程执行的例子里面场景覆盖不全,大家可以按照这种模式自己模拟场景分析代码流程

在这里插入图片描述

多线程执行示例

七、longAdder的sum方法

当我们最终获取计数器值时,我们可以使用LongAdder.longValue()方法,其内部就是使用sum方法来汇总数据的。

java.util.concurrent.atomic.LongAdder.sum():

public long sum() {
    Cell[] as = cells; Cell a;
    long sum = base;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

实现原理,
v a l u e = b a s e + ∑ n i = n C e l l [ i ] value=base+\sum_{n}^{i=n} {Cell[i]} value=base+ni=nCell[i]
遍历cells数组中的值,然后累加。

八、AtomicLong可以弃用了吗?

看上去LongAdder的性能全面超越了AtomicLong,而且阿里巴巴开发手册也提及到 推荐使用 LongAdder 对象,比 AtomicLong 性能更好(减少乐观锁的重试次数),但是我们真的就可以舍弃掉LongAdder了吗?

当然不是,我们需要看场景来使用,如果是并发不太高的系统,使用AtomicLong可能会更好一些,而且内存需求也会小一些。

我们看过sum()方法后可以知道LongAdder在统计的时候如果有并发更新,可能导致统计的数据有误差。

而在只是高并发统计计数的场景下,才更适合使用LongAdder

总结

LongAdder中最核心的思想就是利用空间来换时间,将热点value分散成一个Cell列表来承接并发的CAS,以此来提升性能。

LongAdder的原理及实现都很简单,但其设计的思想值得我们品味和学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值