论文阅读
文章平均质量分 89
CodeWanted
高强度、多重复!
展开
-
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds
到目前为止,各种 3D 场景理解任务仍然缺乏实用和可推广的预训练模型,这主要是由于 3D 场景理解的复杂性质及其由相机视图、照明、遮挡等带来的巨大变化。在本文中,我们通过引入时空表示学习(STRL)框架来应对这一挑战,能够以自我监督的方式从未标记的 3D 点云学习。受婴儿如何从野外视觉数据中学习的启发,我们探索了从 3D 数据中获得的丰富的时空线索。具体而言,==STRL从3D点云序列中提取两个时间相关的帧作为输入,利用空间数据增强对其进行变换,并自监督地学习不变量表示。==为了证实 STRL 的有效性,我原创 2022-12-05 20:52:58 · 1081 阅读 · 1 评论 -
Improved Baselines with Momentum Contrastive Learning
MoCoV2原创 2022-09-28 21:41:43 · 743 阅读 · 0 评论
分享