分水岭的原理
把图像的灰度看作高度图,图像中每个像素点的灰度值看作该点的高度,高灰度值代表山脉,低灰度值代表盆地,每个局部最小值及其周围区域称为集水盆,而集水盆的边界则形成分水岭。

分水岭算法的步骤
1.彩色图像转化成单通道灰度图
2.求梯度图
3.在梯度图的基础上进行分水岭算法,求取分区域的边缘线。
局部最小值点:
对应的是一个盆地的最小值,当我们在盆地里面滴一滴水的时候,由于重力作用,水最终会汇聚到该点。

盆地的其他位置点:
该位置滴的水滴会汇聚到局部最小点。
在盆地的最小值点,打一个洞,然后往盆地里面注水,并阻止两个盆地的水汇集,我们会在两个盆地的水汇集的时刻,在交接的边缘线上(即分水岭)
本文介绍了Halcon中的分水岭算法,用于解决机器视觉中粘连物体图像的分割问题。通过将图像视为高度图,找到局部最小值点并进行分水岭分割,以防止过度分割。同时,讨论了距离变换的不同类型,如欧式、城市街区和棋盘距离,并阐述其在简化分水岭算法复杂度上的作用。最后,给出了实例代码和图像效果展示。
订阅专栏 解锁全文
1915

被折叠的 条评论
为什么被折叠?



