回溯法

这篇博客介绍了如何使用回溯法解决一系列算法问题,包括青蛙过桥、找零钱、自然数拆分、数独游戏、种苹果、八皇后问题和幂集子集问题。通过实例展示了回溯法在解决这些问题中的应用,提供了输入输出格式和AC代码示例。
摘要由CSDN通过智能技术生成

7-1 青蛙过桥 (25 分)

一座长度为n的桥,起点的一端坐标为0,且在整数坐标i处有a[i]个石头【0<=a[i]<=4】, 一只青蛙从坐标0处开始起跳,一步可以跳的距离为1或2或3【即每一步都会落在整数点处】, 青蛙落在i处会踩着该点的所有石头,求青蛙跳出这座桥最少踩多少个石头?并且输出依次跳 过的坐标点路线,如果存在多种路线,输出字典序最小的那一条。

输入格式:

第一行整数n(<150000),接着下一行会有n+1个由空格隔开的整数,即桥上各个坐标处石头数量。

输出格式:

第一行为踩着最少石头个数,第二行为依次跳过的坐标点【字典序最小的】。

输入样例:

在这里给出两组输入。例如:

10
1 2 1 3 0 3 1 2 1 1 2
100
1 2 0 4 0 1 3 4 2 2 1 3 1 4 0 3 0 1 2 3 3 2 2 0 1 0 0 0 0 1 2 1 3 4 0 3 4 4 1 0
4 1 3 1 1 2 3 4 4 4 0 2 0 1 1 1 3 1 3 2 1 2 4 1 2 1 4 1 0 0 1 2 3 0 2 4 4 0 0 4
2 0 0 2 1 3 3 3 0 0 2 0 0 1 2 4 2 2 2 4 0

输出样例:

在这里给出对应的输出。例如:

4
0 2 4 6 8
36
0 2 4 5 8 10 12 14 16 17 20 23 25 26 27 28 31 34 35 38 39 41 44 47 50 52 54 57 60 63 65 68 69 70 73 74 77 78 81 82 85 88 89 91 92 94 97 100

AC代码:

#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 150005;
int n;
int v[MAX_N];
int fa[MAX_N];

void show(int i)
{
   

    if (i)
        cout << " ";
    cout << i;
    if (i > n - 3)
        return;
    else
        show(fa[i]);
}

int main()
{
   
    ios::sync_with_stdio(false);
    cin >> n;
    memset(v, 0, sizeof(v));
    for (int i = 0; i <= n; i++)
    {
   
        cin >> v[i];
    }

    for (int i = n - 3; i >= 0; i--)
    {
   
        int tmp = i + 3;
        if (v[i + 2] <= v[i + 3])
            tmp = i + 2;
        if (v[tmp] >= v[i + 1])
            tmp = i + 1;
        v[i] = v[i] + v[tmp];
        fa[i] = tmp;
    }
    cout << v[0] << endl;
    show(0);
    return 0;
}

7-2 找零钱*** (20 分)

收银员现有 n 张面值分别为 v1,v2,…,v​n的纸币。若找零金额为 m,则一共有多少种找零方法?

注:0<n≤1000,0<v1,v2,…,vn≤10000,0<m≤10000

输入格式

n v1​​ ,v2 ,...,vn  m

输出格式

若有解,则输出全部找零方案,每输出一种 若无解,则输出“None”

输入样例1

6
3 1 4 3 2 7
9

输出样例1

3 1 3 2
3 4 2
4 3 2
2 7

输入样例2

5
5 3 4 6 7
2

输出样例2

None

AC代码:

#include <bits/stdc++.h>
using namespace std;

int b[1024];
int a[1024];

int cnt, n, n_num, num, judge;

void Num(int i)
{
   
    int k, flag = 0;
    if (n_num < num)
    {
   
        for (; i < n; i++)
        {
   
            if (!b[i])
            {
   
                b[i] = 1;
                n_num += a[i];
                Num(i + 1);
                n_num -= a[i];
                b[i] = 0;
            }
        }
    }
    else if (n_num == num)
    {
   
        for (k = 0; k < n; k++)
        {
   
            if (b[k])
            {
   
                if (flag)
                {
   
                    putchar(' ');
                }
                flag = 1;
                cout << a[k];
            }
        }
        putchar('\n');
        cnt++;
    }
}

int main()
{
   
    int i;
    cin >> n;
    for (i = 0; i < n; i++)
    {
   
        cin >> a[i];
    }
    cin >> num;
    Num(0);
    if (!cnt)
    {
   
        cout << "None" << endl;
    }
    return 0;
}

7-3 自然数拆分问题 (60 分)

一个整数N(N > 1)可以拆分成若干个大于等于1的自然数之和,请你输出所有不重复的拆分方式。

所谓拆分方式的重复性判定如下:给定N=a​1 +a​2​​ +…a​m1 和 N=b​1​​ +b​2 +…b​m2​​ 表示整数N的两种拆分方式。对于∀a​i,bj≥1,令集合A={ai ∣1≤i≤m​1 },B={b​j∣1≤j≤m2}。若满足集合A=B,则称这两种拆分方式是重复的。

例如 6 = 3 + 2 和 6 = 2 + 3, 就是重复的拆分方式。

输入格式:

一个正整数N(1≤N≤52)。

注意:本题N的上限52,是经过PTA平台服务器测试后得到的上限,能够保证较好的搜索策略在PTA提交,在1s内求解。本地PC机上,即使较好方法运行时间也可能大于1s,如果觉得方法没问题,可以先提交试试。

输出格式:

按照拆分方案的字典序由小大到大,输出所有方案,请参考输出样例

输入样例:

在这里给出一组输入。例如:

6

输出样例:

在这里给出相应的输出。例如:

6=1+1+1+1+1+1
6=1+1+1+1+2
6=1+1+1+3
6=1+1+2+2
6=1+1+4
6=1+2+3
6=1+5
6=2+2+2
6=2+4
6=3+3
6=6

AC代码:

#include <bits/stdc++.h>
using namespace std;
int n, total = 0;
int a[10001] = {
   1};

int print(int t)
{
   
    //total++;
    //cout<<n<<"=";
    printf("%d=", n);
    for (int i = 1; i <= t; i++)
    {
   
        if (i == t)
        {
   
            printf("%d\n",a[i]);
            // cout << a[i];
            // cout << endl;
        }
        else
            printf("%d+", a[i]);
            // cout << a[i] << "+";
    }
}

int search(int s, int t)
{
   
    int i;
    for (i = a[t - 1]; i <= s; i++)
        if (i < n) //当前数i要大于等于前1位数,且不过n
        {
   
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值