7-1 青蛙过桥 (25 分)
一座长度为n的桥,起点的一端坐标为0,且在整数坐标i处有a[i]个石头【0<=a[i]<=4】, 一只青蛙从坐标0处开始起跳,一步可以跳的距离为1或2或3【即每一步都会落在整数点处】, 青蛙落在i处会踩着该点的所有石头,求青蛙跳出这座桥最少踩多少个石头?并且输出依次跳 过的坐标点路线,如果存在多种路线,输出字典序最小的那一条。
输入格式:
第一行整数n(<150000),接着下一行会有n+1个由空格隔开的整数,即桥上各个坐标处石头数量。
输出格式:
第一行为踩着最少石头个数,第二行为依次跳过的坐标点【字典序最小的】。
输入样例:
在这里给出两组输入。例如:
10
1 2 1 3 0 3 1 2 1 1 2
100
1 2 0 4 0 1 3 4 2 2 1 3 1 4 0 3 0 1 2 3 3 2 2 0 1 0 0 0 0 1 2 1 3 4 0 3 4 4 1 0
4 1 3 1 1 2 3 4 4 4 0 2 0 1 1 1 3 1 3 2 1 2 4 1 2 1 4 1 0 0 1 2 3 0 2 4 4 0 0 4
2 0 0 2 1 3 3 3 0 0 2 0 0 1 2 4 2 2 2 4 0
输出样例:
在这里给出对应的输出。例如:
4
0 2 4 6 8
36
0 2 4 5 8 10 12 14 16 17 20 23 25 26 27 28 31 34 35 38 39 41 44 47 50 52 54 57 60 63 65 68 69 70 73 74 77 78 81 82 85 88 89 91 92 94 97 100
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 150005;
int n;
int v[MAX_N];
int fa[MAX_N];
void show(int i)
{
if (i)
cout << " ";
cout << i;
if (i > n - 3)
return;
else
show(fa[i]);
}
int main()
{
ios::sync_with_stdio(false);
cin >> n;
memset(v, 0, sizeof(v));
for (int i = 0; i <= n; i++)
{
cin >> v[i];
}
for (int i = n - 3; i >= 0; i--)
{
int tmp = i + 3;
if (v[i + 2] <= v[i + 3])
tmp = i + 2;
if (v[tmp] >= v[i + 1])
tmp = i + 1;
v[i] = v[i] + v[tmp];
fa[i] = tmp;
}
cout << v[0] << endl;
show(0);
return 0;
}
7-2 找零钱*** (20 分)
收银员现有 n 张面值分别为 v1,v2,…,vn的纸币。若找零金额为 m,则一共有多少种找零方法?
注:0<n≤1000,0<v1,v2,…,vn≤10000,0<m≤10000
输入格式
n v1 ,v2 ,...,vn m
输出格式
若有解,则输出全部找零方案,每输出一种 若无解,则输出“None”
输入样例1
6
3 1 4 3 2 7
9
输出样例1
3 1 3 2
3 4 2
4 3 2
2 7
输入样例2
5
5 3 4 6 7
2
输出样例2
None
AC代码:
#include <bits/stdc++.h>
using namespace std;
int b[1024];
int a[1024];
int cnt, n, n_num, num, judge;
void Num(int i)
{
int k, flag = 0;
if (n_num < num)
{
for (; i < n; i++)
{
if (!b[i])
{
b[i] = 1;
n_num += a[i];
Num(i + 1);
n_num -= a[i];
b[i] = 0;
}
}
}
else if (n_num == num)
{
for (k = 0; k < n; k++)
{
if (b[k])
{
if (flag)
{
putchar(' ');
}
flag = 1;
cout << a[k];
}
}
putchar('\n');
cnt++;
}
}
int main()
{
int i;
cin >> n;
for (i = 0; i < n; i++)
{
cin >> a[i];
}
cin >> num;
Num(0);
if (!cnt)
{
cout << "None" << endl;
}
return 0;
}
7-3 自然数拆分问题 (60 分)
一个整数N(N > 1)可以拆分成若干个大于等于1的自然数之和,请你输出所有不重复的拆分方式。
所谓拆分方式的重复性判定如下:给定N=a1 +a2 +…am1 和 N=b1 +b2 +…bm2 表示整数N的两种拆分方式。对于∀ai,bj≥1,令集合A={ai ∣1≤i≤m1 },B={bj∣1≤j≤m2}。若满足集合A=B,则称这两种拆分方式是重复的。
例如 6 = 3 + 2 和 6 = 2 + 3, 就是重复的拆分方式。
输入格式:
一个正整数N(1≤N≤52)。
注意:本题N的上限52,是经过PTA平台服务器测试后得到的上限,能够保证较好的搜索策略在PTA提交,在1s内求解。本地PC机上,即使较好方法运行时间也可能大于1s,如果觉得方法没问题,可以先提交试试。
输出格式:
按照拆分方案的字典序由小大到大,输出所有方案,请参考输出样例
输入样例:
在这里给出一组输入。例如:
6
输出样例:
在这里给出相应的输出。例如:
6=1+1+1+1+1+1
6=1+1+1+1+2
6=1+1+1+3
6=1+1+2+2
6=1+1+4
6=1+2+3
6=1+5
6=2+2+2
6=2+4
6=3+3
6=6
AC代码:
#include <bits/stdc++.h>
using namespace std;
int n, total = 0;
int a[10001] = {
1};
int print(int t)
{
//total++;
//cout<<n<<"=";
printf("%d=", n);
for (int i = 1; i <= t; i++)
{
if (i == t)
{
printf("%d\n",a[i]);
// cout << a[i];
// cout << endl;
}
else
printf("%d+", a[i]);
// cout << a[i] << "+";
}
}
int search(int s, int t)
{
int i;
for (i = a[t - 1]; i <= s; i++)
if (i < n) //当前数i要大于等于前1位数,且不过n
{
这篇博客介绍了如何使用回溯法解决一系列算法问题,包括青蛙过桥、找零钱、自然数拆分、数独游戏、种苹果、八皇后问题和幂集子集问题。通过实例展示了回溯法在解决这些问题中的应用,提供了输入输出格式和AC代码示例。
最低0.47元/天 解锁文章
673

被折叠的 条评论
为什么被折叠?



