
Python数据可视化
文章平均质量分 85
以实战教程为线索,您可以学到在Python可视化的分析下,数据将每一维的值分类、排序、组合和显示,这样就可以看到表示对象或事件的数据的多个属性或变量。能够用一些简短的图形就能体现那些复杂信息.决策者可以轻松地解释各种不同的数据源,数据可视化能更好地寻找关系,可以很快的看到全部的数据变化以及局部的数据
BinaryStarXin
专注于网络技术、各类计算机热门行业技术研究分享、嵌入式开发、人工智能、后端与前端等方面的技术知识文章分享,欢迎留言
展开
-
Python金融数据分析 1.2
本章讨论了Python 在某些金融领域的适用性,软件应用方面的优势,函数式和面向对象式编程,以及如何实现应用程序简洁化。至于编程范式选择,尚没有统一答案。我们还探讨了 Python的交互式计算图形界面--IPython,展示了其在科学计算和多媒体显示方面的实用性。原创 2024-03-24 00:30:26 · 75 阅读 · 0 评论 -
Python金融数据分析 1.3
B F这里E(R)为证券i的期望回报率,:为其他因素都忽略不计时的期望回报率B.代表证券i对因素j的敏感性,F为影响证券i期望回报率的因素i的值。运算得a、b、c的值分别为6、15 和-23.此处我们应用 scipy.linalg 的 lu_factor 函数,将 LU 变量定义为矩阵 A的 LU分解形式,利用lu-solve 函数求解该方程组。投资1倍证券a的数量、3倍的证券b的数量与2倍的证券c的。假设我们已经构建一个含有7个因子的APT模型,该模型可以返回的值下列数据集从1至9的9个周期内获得。原创 2024-03-24 00:30:04 · 96 阅读 · 0 评论 -
Python金融数据分析 1.1
IPython 是用于并行与分布式计算的高性能图形界面。你可通过IPythonNote-book 共享代码、文本、数学表达式、图像和其他丰富的多媒体资料。本节我们将学习IPython Notebook初步使用方法。原创 2024-03-23 17:50:08 · 125 阅读 · 0 评论 -
Python学习-文字转图片(支持一段话或文章)
【代码】Python学习-文字转图片(支持一段话或文章)原创 2023-10-14 19:19:27 · 264 阅读 · 0 评论 -
9.4.4 pyecharts——时间线轮播多图
pyecharts.faker 是一个由 pyecharts 官方提供的测试数据包,它包含一个 Faker 类,通过 Faker 对象访问属性来获取一些测试数据。pyecharts.charts 的 Timeline 类表示按时间线轮播的组合图表,它可以通过单击时间线的。图 9-15 的下方增加了时间线,通过单击时间线的时间刻度可以展示其对应的单图表,例如,将 9.4.1 节的示例中绘制的柱形图的主题风格改为 ROMA,具体代码如下。下面绘制一个由多个柱形图组成的带时间线的组合图表,示例代码如下。原创 2023-09-14 22:00:44 · 1104 阅读 · 2 评论 -
9.4.2 Python 数据可视化——顺序多图
Tab 类提供了一个 add() 方法,使用 add() 方法可以为组合图表添加图表。add() 方法的语。pyecharts.charts 的 Page 类表示顺序显示的组合图表,它可以在同一网页中按顺序渲染多。pyecharts.charts 的 Tab 类表示以选项卡形式显示的组合图表,它可以通过单击不同的选。下面绘制一个由柱形图和折线图组成的、按顺序显示的组合图表,示例代码如下。下面绘制一个由柱形图和折线图组成的选项卡形式的组合图表,示例代码如下。·interval :表示图例的间隔,默认为 1。原创 2023-09-12 22:42:52 · 275 阅读 · 0 评论 -
9.3.6 Python 数据可视化——绘制漏斗图
pyecharts 的 Funnel 类表示漏斗图,该类中提供了一个 add() 方法,使用 add() 方法可以为。pyecharts 的 Sankey 类表示桑基图,该类中提供了一个 add() 方法,使用 add() 方法可以为。Grid 类中包含一个 add() 方法,使用 add() 方法可以为组合图表添加配置项。除了前面介绍的单图表,pyecharts 也支持绘制组合图表,即在同一画布显示的多个图表。多个图表按照不同的组合方式,可以分为并行多图、顺序多图、选项卡多图和时间轮播多图。原创 2023-09-12 22:36:00 · 928 阅读 · 0 评论 -
9.3.3 pyecharts——绘制散点图
pyecharts 的 Bar3D 类表示 3D 柱形图,该类中提供了一个 add() 方法,使用 add() 方法可。pyecharts 的 Scatter 类表示散点图,EffectScatter 类表示带有涟漪特效的散点图,这两个。类中均提供了一个 add_yaxis() 方法,使用 add_yaxis() 方法可以为散点图添加数据和配置项。pyecharts 的 Map 类表示统计地图,该类中提供了一个 add() 方法,使用 add() 方法可以为。以为 3D 柱形图添加数据和配置项。原创 2023-09-12 22:30:02 · 893 阅读 · 0 评论 -
9.2.4 Python 数据可视化——渲染图表
矩形)、'triangle'(三角形)、'diamond'(菱形)、'pin'(大头针)、'arrow'(箭头)、'none'(无)。pyecharts 的 Line 类表示折线图,该类中提供了一个 add_yaxis() 方法,使用 add_yaxis() 方。·symbol :表示标记的图形,可以取值为 'circle'(圆形)、'rect'(矩形)、'roundRect'(圆角。pyecharts 的 Pie 类表示饼图,该类中提供了一个 add() 方法,使用 add() 方法可以为饼图。原创 2023-09-12 22:22:03 · 662 阅读 · 0 评论 -
9.2Python 数据可视化——pyecharts 基础知识
将这些图表类封装到 pyecharts.charts 模块中,例如 9.2.1 节的示例中表示柱形图的 Bar 类。以上示例首先从 pyecharts.charts 模块中导入了表示柱形图的类 Bar,从 pyecharts 中导。参数 color 设为 'gray',表示标签文本的颜色为灰色;若 pyecharts 需要为图表设置系列配置项,则需要将系列配置项传入 add() 或 add_××()以上方法的 init_opts 参数表示初始化配置项,该参数需要接收一个 InitOpts 类的对象,原创 2023-09-07 23:04:28 · 208 阅读 · 0 评论 -
第 9 章——数据可视化后起之秀——pyecharts
pyecharts 是一个针对 Python 用户开发的、用于生成 ECharts 图表的库,与 matplotlib 相比,化神器——pyecharts 库,使用 pyecharts 可以快速生成效果惊艳的 Echarts 图表。v1 是一个全新的版本,它支持 Python3.6 以上的开发环境。受欢迎的语言,也加入 ECharts 的使用行列,并研发出方便 Python 开发者使用的数据可视化。★掌握 pyecharts 的常用图表,可以熟练地使用 pyecharts 绘制常用图表。原创 2023-09-07 22:57:50 · 540 阅读 · 0 评论 -
8.9使用 matplotlib 绘制高级图表——绘制树状图
pywaffle 是 Python 中专门绘制华夫饼图的包,它提供了一个继承自 Figure 的子类 Waffle,matplotlib 中并未提供华夫饼图的绘制函数,但可以结合 pywaffle 包绘制华夫饼图。·legend :表示图例,可以接收一个字典,其中字典的键为 legend() 函数的关键字参数。·title :表示标题,可以接收一个字典,其中字典的键为 title() 函数的关键字参数。图 8-22 中华夫饼图总共由 100 个方格组成,其中绿色的方格代表上座的比例,灰色的。原创 2023-09-07 22:54:33 · 688 阅读 · 0 评论 -
8.8 Python 数据可视化——绘制桑基图
和买书几类,且其中每项投入或产出值分别为 0.7、0.3、 -0.3、 -0.1、 -0.3、 -0.1、 -0.1、 -0.1。分支代表收入的数据,呈箭头形状的分支代表支出的数据。图 8-18 中,桑基图的各个分支代表生活消费的每个选项,其中分支末端呈内凹形状的。个选项代表的分支均属于生活消费的收入数据,其余选项的分支均属于生活消费的支出数据,据流量的大小,且所有主支宽度的总和等于所有分支宽度的总和,常见于能源、材料成分等。例如,为刚刚创建的桑基图 sankey 添加流的数据和标签,具体代码如下。原创 2023-09-07 22:43:45 · 954 阅读 · 0 评论 -
8.6 使用 matplotlib 绘制高级图表——绘制人口金字塔图
下面使用 pandas 读取 population.xlsx 文件的数据,并根据读取的数据绘制人口金字塔图,需要说明的是,图 8-13 的表格中 Number 一列为男性和女性的人口数,其中男性的数据。由图 8-14 可知,各年龄段男性人口的数量与女性人口的数量相差不大,图 8-16 中,漏斗图的矩形条的长短代表着转化率的多少。由图 8-12 可知,人口金字塔图左侧的一组矩形条代表各年龄段男性的人口数,右侧的。图 8-14 中,左侧的矩形条代表不同年龄段的男性人口数量,右侧的矩形条代表不同年。原创 2023-09-07 22:39:56 · 666 阅读 · 0 评论 -
第八章、使用 matplotlib 绘制高级图表
图 8-11 中,每个深灰色的条形代表任务的周期,条形越长代表周期越长。stem() 函数会返回一个形如 (markerline, stemlines, baseline) 的元组,其中元组的第 1 个元。contourf() 与 contour() 函数的参数相似,此。在 matplotlib 中,pyplot 可以使用 contour()、contourf() 函数分别绘制和填充等高线图。此外,Axes 类的对象也可以使用 contour()、contourf() 方法绘制和填充等高线图。原创 2023-09-06 23:05:28 · 264 阅读 · 0 评论 -
7.3.2——绘制 3D 图表和统计地图
文件的前 500 条数据,将读取的“lat”和“lon”两列的地理坐标转换到地图投影中,将读取。3.创建 Basemap 类的对象时可以指定地图投影的类型和要处理的地球区域。在图 7-7 中,地图中不同大小的深灰色圆点代表人口的数量,圆点越大说明该地域的人。3.关于 animation 模块,下列描述错误的是( )。(3)制作一个圆点沿曲线运动的动画,并时刻显示圆点的坐标位置。的“pop”列的数据绘制为气泡并显示到地图上,具体代码如下。3.basemap 工具包中默认使用的地图投影是。原创 2023-09-06 22:47:24 · 466 阅读 · 0 评论 -
7.2.2 绘制 3D 图表和统计地图
确定地图背景的投影区域之后,用户还需要对待处理的区域进行完善,为该区域绘制河岸线、河流和地区或国家边界等。· resolution :表示包括海岸线、湖泊等的分辨率,可以取值为 'c'(粗略,默认值)、'l'(低)、basemap 工具包中主要包含一个表示基础地图背景的 Basemap 类,通过创建 Basemap 类。需要说明的是,projection 参数支持众多的地图投影类型,projection 参数的常用取值及说。需要说明的是,在命令执行的过程中会询问用户是否安装,用户只需同意。原创 2023-09-05 22:56:02 · 342 阅读 · 0 评论 -
7.1.3 绘制 3D 图表和统计地图
matplotlib 在 1.1 版本的标准库中加入了动画模块——animation,使用该模块的 Animation。·blit :表示是否更新所有的点,默认为 False。ArtistAnimation 是基于一组 Artist 对象的动画类,它通过一帧一帧的数据制作动画。init(),之后根据这两个函数创建动画,实现正弦曲线移动的效果,具体代码如下。需要说明的是,因为每次绘制的曲线都是一个新的图形,所以每次曲线的颜色都是不。·interval :表示更新动画的频率,以毫秒为单位,默认为 200。原创 2023-09-05 22:50:13 · 376 阅读 · 0 评论 -
第七章——绘制 3D 图表和统计地图
Axes3D 类的对象使用 plot_wireframe() 方法绘制线框图,plot_wireframe() 方法的语法格式。式创建 Axes3D 类的对象 :一种方式是 Axes3D() 方法,另一种方式是 add_subplot() 方法,具。Axes3D,使用 Axes3D 类可以构建一个三维坐标系的绘图区域。Axes3D() 是构造方法,它直接用于构建一个 Axes3D 类的对象,Axes3D() 方法的语法格。常见的 3D 图表包括 3D 线框图、3D 曲面图、3D 柱形图、3D 散点图等。原创 2023-09-05 22:45:09 · 304 阅读 · 0 评论 -
6.5.2坐标轴的定制——正弦与余弦曲线
(1)在距画布顶部 0.2、左侧 0.2 的位置上添加一个宽度为 0.5、高度为 0.5 的绘图区域。本章主要介绍了坐标轴的定制,包括向任意位置添加坐标轴、定制刻度、隐藏坐标轴的。1.坐标轴包括轴脊、刻度,其中刻度线可以细分为 和次刻度线。1.matplotlib 的坐标轴默认隐藏次刻度线。1.下列选项中,可以获取坐标轴全部轴脊的是( )。2.下列方法中,用于设置主刻度标签格式的是( )。4.下列选项中,可以隐藏坐标轴上轴脊的是( )。5.下列方法中,用于移动轴脊位置的是( )。原创 2023-09-05 22:39:50 · 418 阅读 · 0 评论 -
6.4.2 坐标轴的定制——隐藏部分轴脊
matplotlib 可以只隐藏坐标轴的部分轴脊,只需要访问 spines 属性获取相应的轴脊,之后。在 6.3.3 节的实例中,折线图显示了全部的轴脊,但右轴脊和上轴脊并未起到任何作用。调用 set_color() 方法将轴脊的颜色设为 none 即可,示例代码如下。从图 6-6 中可以看出,图表只隐藏了坐标轴的部分轴脊而没有隐藏轴脊上的刻度。6.4.3 实例 2 :深圳市 24 小时的平均风速(隐藏部分轴脊)本实例将折线图的右轴脊和上轴脊隐藏,具体代码如下。依次隐藏上轴脊、 左轴脊和右轴脊。原创 2023-09-05 22:35:29 · 363 阅读 · 0 评论 -
6.3.3 Python 数据可视化
使用 pyplot 的 axis() 函数可以设置或获取一些坐标轴的属性,包括显示或隐藏坐标轴的。图 6-4 中,x 轴代表以两小时为间隔的时间,y 轴代表平均风速。箭头、圆形、长方形等)的类,通过创建这些类的对象可以快速绘制常见的形状。matplotlib 中的坐。标系默认有 4 个轴脊,分别是上轴脊、下轴脊、左轴脊和右轴脊,其中上轴脊和右轴脊并不。轴的数据,使用 plot() 方法绘制反映深圳市 24 小时的平均风速的折线图,12 点的风速最强,约为 22km/h,0 点的风速最弱,约为 8km/h。原创 2023-09-05 22:30:13 · 598 阅读 · 0 评论 -
6.3Python 数据可视化 ——定制刻度
使用 matplotlib 的 set_major_locator() 或 set_minor_locator() 方法设置坐标轴的主刻度或次。tick_params() 函数。·which :表示刻度的类型,可以取值为 'major'、'minor' 或 'both',默认为 'major'。·axis :表示选择操作的轴,可以取值为 'x'、'y' 或 'both',默认为 'both'。·direction :表示刻度线的方向,可以取值为 'in'、'out' 或 'inout'。原创 2023-09-04 21:25:18 · 588 阅读 · 0 评论 -
第 6 章——坐标轴的定制
(2) 参 数 projection 表 示 坐 标 轴 的 类 型, 可 以 是 None、'aitoff'、'hammer'、'lambert'、素为键,使用 'left'、'right'、'bottom'、'top' 分别可获取位于坐标轴左侧、右侧、下方和上方的。'mollweide'、'polar' 或 'rectilinear' 中的任一取值,也可以使用自定义的类型。于确定坐标轴的位置;的对象均包含于 Axes 类对象中,可通过 Axes 类的一些属性分别获取,关于这些属性的介绍。原创 2023-09-03 21:03:01 · 288 阅读 · 0 评论 -
Python 数据可视化 5.6 习题
5.当 matplotlib 使用 GridSpec() 自定义布局结构时,可以通过( )参数控制子图的间隙。1.请简述 subplot()、subplots() 和 subplot2grid() 函数的区别。1.subplot(223) 与 subplot(2, 2, 3) 是等价的。2.matplotlib 使用 subplot() 可以一次绘制多个子图。3.同一画布的多个子图可以共享同方向的坐标轴。1.下列函数中,可以一次绘制多个子图的是( )。4.下列选项中,可以实现紧密布局的是( )。原创 2023-09-03 20:57:30 · 2208 阅读 · 0 评论 -
5.4.3 自定义布局
GridSpec 类,通过显式地创建 GridSpec 类对象来自定义画布中子图的布局结构,使得子图能。根据表 5-5 和表 5-6 的数据,使用 3 个子图进行展示 :在第 0 行第 0 列的区域中,绘制。图 5-19 中共有 3 个图表,位于最上方的图表描述了 2018 年上半年某品牌汽车的销售额,绘制自定义区域的子图;最后介绍了子图的布局。随着人们的生活水平日益提高,汽车已经成为人们出行的代步工具,为人们的生活带来。本章主要对子图的相关内容进行了介绍,首先介绍了子图的绘制,包括绘制固定区域和。原创 2023-09-03 20:48:51 · 122 阅读 · 0 评论 -
5.4 子图的布局
一种方式是使用 subplots() 或 figure() 函数的 constrained_layout 参数;matplotlib 使用 subplots() 或 figure() 函数创建子图或画布时,可以将 constrained_layout 参。例如,使用 subplots() 函数绘制 2 行 2 列的带有坐标轴标签的子图,并通过 tight_layout()例如,使用 subplots() 函数绘制 2 行 2 列的带有坐标轴标签的子图,并通过 subplots()原创 2023-09-03 20:41:55 · 280 阅读 · 0 评论 -
5.3 共享子图的坐标轴
sharex 或 sharey 参数支持 False 或 'none'、True 或 'all'、'row'、'col' 中任一取值,关。下面以同一画布中 2 行 2 列的子图为例,分别展示 sharex 参数不同取值的效果,如图 5-11 所示。中气温、降水是反映一个地区气候特性的重要指标。在同一画布中,若子图与其他子图的同方向的坐标轴相同,则可以共享子图之间同方向。2 的矩阵区域,之后在索引为 4 的区域中绘制另一个子图,后绘制的子图与。2 的矩阵区域,之后在索引为 1 的区域中先绘制一个子图,再次。原创 2023-09-03 20:38:32 · 429 阅读 · 0 评论 -
2.4 绘制堆积面积图
baseline :表示计算基线的方法,包括 'zero'、'sym'、'wiggle' 和 'weighted_wiggle'。·histtype :表示直方图的类型,支持 'bar'、'barstacked'、'step'、'stepfilled' 四种取值,其中。若 histtype 的值为 'step' 或 'stepfilled',则。'bar' 为默认值,代表传统的直方图;·align :表示矩形条边界的对齐方式,可设置为 'left'、'mid' 或 'right',默认为 'mid'。原创 2023-08-31 23:15:37 · 368 阅读 · 0 评论 -
第三章、2.2.2实例
另外,在使用 pyplot 的 barh() 函数绘制图表时,可以通过给 xerr、yerr 参数传值的方式为。使用 pyplot 的 barh() 函数可以快速绘制条形图或堆积条形图,barh() 函数的语法格式如下。使用 pyplot 的 barh() 函数还可以绘制具有多组条形的条形图。使用 pyplot 的 barh() 函数绘制图表时,可以通过给 left 参数传值的方式控制条形的。受消费者欢迎的网购平台。轴的数据,使用 bar() 函数绘制各年份对应的 GMV 的柱形图,具体代码如下。原创 2023-08-31 23:01:12 · 115 阅读 · 0 评论 -
第三章、使用 matplotlib 绘制简单图表
此外,在使用 pyplot 的 bar() 函数绘制图表时可以通过给 xerr、yerr 参数传值的方式为柱。使用 pyplot 的 bar() 函数还可以绘制具有多组柱形的柱形图。在使用 pyplot 的 bar() 函数绘制图表时,可以通过给 bottom 参数传值的方式控制柱形的。使用 pyplot 的 plot() 函数可以快速绘制折线图。使用 pyplot 的 plot() 函数还可以绘制具有多个线条的折线图,通过以下任意一种方式均。值,使后绘制的柱形位于先绘制的柱形的上方。原创 2023-08-31 22:55:41 · 135 阅读 · 0 评论 -
Postgresql 批量插入命令COPY使用
对于导出数据中有中文的,特别说明下,如果我们导出的csv中的中文,试用excel查看是乱码的,但是试用其它文本编辑器(比如nodepad++)是好的,这时候只需要在文本编辑器中,将文件编码格式改为UTF-8-BOM就行,这应该是微软自己对文件编码格式的判断问题。column_name为列名称,也就是我们可指定将数据填充到指定的某些列,如果不指定,则默认将数据列从左至右依次填充到每一个列中。注意:小编在使用导入命令时,发现windows操作系统下,文件路径中如果有中文,无法导入,系统会报。原创 2023-08-26 23:31:38 · 924 阅读 · 0 评论 -
5.2 绘制自定义区域的子图
根据表 5-3 的数据,分别使用 3 个子图进行展示 :在第 0 ~ 1 行第 0 ~ 1 列的区域中,·shape :表示规划的区域结构,它是一个包含两个整型数据的元组,其中第 1 个元素表。·loc :表示选择区域的位置,它是一个包含两个整型数据的元组,其中第 1 个元素表示。表的宽度占画布宽度的三分之一,高度占画布高度的二分之一;3 的矩阵区域,并在第 0 行第 2 列的区域中绘制子图;方,图表的宽度占画布的三分之二,高度占画布高度的二分之一。示规划区域的行数,第 2 个元素表示规划区域的列数。原创 2023-08-20 23:12:56 · 607 阅读 · 0 评论 -
5.1.3 绘制多子图
使用 pyplot 的 subplots() 函数可以在规划好的所有区域中一次绘制多个子图。subplots() 函数会返回一个包含两个元素的元组,其中元组的第一个元素为 Figure 对象,据某数据平台统计,部分国家养猫人群比例和养狗人群比例的情况如表 5-2 所示。1 和索引为 2 的区域中分别绘制反映养猫人群比例与养狗人群比例的条形图,具体代码如下。比例,右侧的图表展示了部分国家养狗人群的比例。图 5-8 中,整个窗口同时显示了两个图表,其中左侧的图表展示了部分国家养猫人群的。原创 2023-08-20 23:09:59 · 244 阅读 · 0 评论 -
第 5 章——子图的绘制及坐标轴共享
projection :表示子图的投影类型,可以为 None、'aitoff'、'hammer'、'lambert'、'mollweide'、图片、不支持用户交互的特点。需要说明的是,Figure 类对象可以使用 add_subplot() 方法绘制单子图,此方式与 subplot()使用 pyplot 的 subplot() 函数可以在规划好的某个区域中绘制单个子图,subplot() 函数的。例如,subplot(235) 与 subplot(2, 3, 5) 是等价的。品 B 的销售额的占比。原创 2023-08-20 23:07:38 · 295 阅读 · 0 评论 -
4.9 习题
(4)代表 2019 年的折线样式 :颜色为“#006374”,标记为长菱形,线型为实线,线宽。A.matplotlib 会读取 matplotlibrc 文件的配置信息以指定图表的默认样式。(3)代表 2018 年的折线样式 :颜色为“#8B0000”,标记为正三角形,线型为长虚线,2.matplotlib 中折线图的线条默认不显示数据标记。(4)在 x=1,y=np.cos(1) 的位置添加指向型注释文本。(2)余弦曲线的样式 :蓝色,线宽为 1.0,透明度为 0.5。原创 2023-08-20 23:02:18 · 1595 阅读 · 2 评论 -
4.6 切换主题风格
下面介绍 fill()、fill_between() 和 fill_betweenx() 函数。matplotlib 中提供了多个函数用于填充多边形或区域,分别为 fill()、fill_between() 和 fill_该函数的参数 style 表示图表的主题风格,它可以接收 matplotlib 中所有可用的主题风格。matplotlib.style 模块中内置了一些图表的主题风格,通过切换不同的主题风格以满足用户。例如,将第一条曲线位于第二条曲线上方的区域填充为蓝色,将第一条曲线位于第二条。原创 2023-08-20 22:58:22 · 266 阅读 · 0 评论 -
4.4.2 实例 3 :标记不同产品各季度的销售额
和产品 C 各季度的销售额的折线图,并使用不同的线型、颜色、标记进行区分,具体代码。图 4-7 中,每条折线均使用不同样式的数据标记标注了数据的位置,其中蓝色折线使用。黑体给人厚重、抢眼的感觉。于每种字体具有不同的特点、使用场景,因此合适的字体可以对图表起到很好的修饰作用。图 4-9 中,每条折线均使用指定字体样式的注释文本说明了数据点的具体数值。销售额,公司对每款产品的年销售额进行了核算,核算之后的结果如表 4-5 所示。4-9 可知,注释文本的字号小于其他文本的字号,并未给用户一种喧宾夺主的感觉。原创 2023-08-20 22:30:05 · 491 阅读 · 0 评论 -
4.3 选择线型
使用 pyplot 的 plot() 或 scatter() 函数绘制折线图或散点图时,可以将标记的取值传递给。图 4-3 中,紫色的虚线代表 2019 年 7 月的汇率,湖绿色的实线代表 2017 年 7 月的汇率。由图 4-3 可知,2019 年 7 月的汇率呈现较为平稳的趋势,2017 年 7 月的汇率呈现下降趋势。线时,可以将线型的取值传递给 linestyle 或 ls 参数,以选择其他的线条类型。在 matplotlib 中,折线图的线条由数据标记及其之间的连线组成,且默认隐藏数据标记。原创 2023-08-20 22:26:38 · 403 阅读 · 0 评论 -
图表样式的美化——使用颜色映射表
色顺序为 black、white、gray,那么颜色映射表 demo_r 的颜色顺序为 gray、white、black。颜色建议,为用户节省大量的开发时间。颜色映射表能够表示丰富的颜色,常用映射表有 autumn、bone、cool、copper、flag、matplotlib 内置了众多预定义的颜色映射表,使用这些颜色映射表可以为用户提供更多的。缀的颜色表相当于同名的无“_r”后缀的反转后的颜色表。以上展示的颜色映射表的名称分为有“_r”后缀和无“_r”后缀两种,其中有“_r”后。原创 2023-08-20 22:22:16 · 314 阅读 · 0 评论