背包问题-0/1背包

0/1背包问题

问题描述:一个容量大小为n的背包,每件物品的重量为 w e i g h t [ i ] weight[i] weight[i],每件物品对应的价值 v a l u e [ i ] value[i] value[i],物品不可分割,找到背包中物品价值总和的最大值。
如下图所示:假设背包容量为7,使得背包价值最大的组合是物品1+物品2=55

求解算法:动态规划
求解思路:
(1)初始化一个二维数组 d p [ r o w ] [ c o l ] dp[row][col] dp[row][col],其中 r o w = row = row= 物品的数量, c o l = col = col=背包的最大容量, d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从下标为 [ 0 − i ] [0-i] [0i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

vector<vector<int>> dp(weight.size(), vector<int> (bagCapacity + 1,0));

在这里插入图片描述

(2)改变第一行,当 j > = w e i g h t [ 0 ] j >= weight[0] j>=weight[0] 时,表示把物品 0 放入背包,此时背包的价值 = v a l u e [ 0 ] = value[0] =value[0]

for(int j = weight[0]; j <= bagCapacity; j++) {
     dp[0][j] = value[0];
 }

在这里插入图片描述
(3)改变其余行,当 j < w e i g h t [ i ] j < weight[i] j<weight[i] 时,说明背包中还没放入新的物品,此时 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j] = dp[i - 1][j] dp[i][j]=dp[i1][j];当 j > w e i g h t [ i ] j>weight[i] j>weight[i] 时,状态转移方程为: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) ; dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); dp[i][j]=max(dp[i1][j],dp[i1][jweight[i]]+value[i]);

for(int i = 1; i < weight.size(); i++) {
   for(int j = 0; j <= bagCapacity; j++) {
       if(j < weight[i]) {
           dp[i][j] = dp[i - 1][j];
         }
       else {
          dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }
}

在这里插入图片描述

数组右下角的数值即为背包的最大价值。

完整c++代码:

#include <iostream>
#include <vector>
using namespace std;
int main()
{   
    //  物品的重量,价值
    vector<int> weight = {2,3,4,5};
    vector<int> value = {10,25,30,40};
    // 背包的最大容量
    int bagCapacity = 7;

    // row = weight.size(), col = bagCapacity + 1
    // 二维数组
    vector<vector<int>> dp(weight.size(), vector<int> (bagCapacity + 1,0));

    // 初始化二维数组
    // 矩阵的第一行,当物品0的重量大于背包容量时,dp[][]=0,反之dp[][]=value[0]
    for(int j = weight[0]; j <= bagCapacity; j++) {
        dp[0][j] = value[0];
    }

    // 遍历
    for(int i = 1; i < weight.size(); i++) {
        for(int j = 0; j <= bagCapacity; j++) {
            if(j < weight[i]) {
                dp[i][j] = dp[i - 1][j];
            }
            else {
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
            }
        }
    }
    // for(int i = 0; i < dp.size(); i++){
    //     for(int j = 0; j <= bagCapacity; j++) {
    //         cout<<dp[i][j]<<" ";
    //     }
    //     cout<<endl;
    // }
    cout<<dp[weight.size() - 1][bagCapacity]<<endl;
}

参考:https://programmercarl.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值