人工智能覆盖面广泛,包括自动推理、联系、学习等。
机器学习是人工智能的一个重要分支,在20世纪八九十年代才逐渐发展起来,主要研究如何让计算机具有能够自我学习的能力。机器学习的算法有上千种,包括决策树(decision tree)、支持向量机(support vector machine,SVM)、遗传算法(genetic algorithm),等等。
基于人工神经网络的机器学习算法近些年来日益盛行,主要是由于人工神经网络中的反向传播算法的关键性技术。该算法可以精确地调整人工神经网络出现问题的部件,从而快速降低网络进行分类或预测地错误率。因此,反向传播算法是人工神经网络的核心。
深度学习的最大特色是可以处理各种非结构化数据——特指图像、视频、文本、音频,等等。一般的机器学习技术更适合处理结构化数据,即可以用关系型数据库进行存储、管理和访问数据。
集智俱乐部.深度学习原理与PyTorch实战[M].北京:人民邮电出版社,2019.