人工智能、机器学习、人工神经网络和深度学习的关系

人工智能覆盖面广泛,包括自动推理、联系、学习等。

机器学习是人工智能的一个重要分支,在20世纪八九十年代才逐渐发展起来,主要研究如何让计算机具有能够自我学习的能力。机器学习的算法有上千种,包括决策树(decision tree)、支持向量机(support vector machine,SVM)、遗传算法(genetic algorithm),等等。

基于人工神经网络的机器学习算法近些年来日益盛行,主要是由于人工神经网络中的反向传播算法的关键性技术。该算法可以精确地调整人工神经网络出现问题的部件,从而快速降低网络进行分类或预测地错误率。因此,反向传播算法是人工神经网络的核心。

深度学习的最大特色是可以处理各种非结构化数据——特指图像、视频、文本、音频,等等。一般的机器学习技术更适合处理结构化数据,即可以用关系型数据库进行存储、管理和访问数据。

 

集智俱乐部.深度学习原理与PyTorch实战[M].北京:人民邮电出版社,2019.

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页

打赏作者

AA_WangZai

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值