【数学】三边相等的四边形与60度角

三边相等的四边形与60°\Huge\textsf{三边相等的四边形与60}\degree\textsf{角}


解决题目的关键是:

看到两个已知角的和是60°60\degree的倍数,

就可以构造正三角形。

直接上题!


例<1>\Large\texttt{例<1>}

如图,AB=BC=CD,  C=80°,  B=160°,AB = BC = CD,\;\angle C=80\degree ,\;\angle B=160\degree ,A.\angle A.

此题在我的这篇文章中已经介绍过了,但我还是把过程再来一遍。

解:

CDCD为边向上作正三角形CEDCED,连接AEAE,则 AB=BC=CD=CE=EDAB = BC = CD = CE = ED

BCE=BCDECD=80°60°=20°=180°B,  ABCE\angle BCE = \angle BCD - \angle ECD = 80\degree - 60\degree = 20\degree = 180\degree - \angle B ,\;\therefore AB \parallel CE

AB=BC=CE,    \because AB = BC = CE,\;\therefore \;四边形ABCEABCE为菱形,AE==ED.\therefore AE = …… = ED .

AED=360°AECCED=360°160°60°=140°\angle AED = 360\degree - \angle AEC - \angle CED = 360\degree - 160\degree - 60\degree = 140\degree

EAD=EDA=(180°140°)/2=20°\therefore \angle EAD = \angle EDA = (180\degree - 140\degree)/2 = 20\degree

BAD=BAE+EAD=20°+20°=40°.\therefore \angle BAD = \angle BAE + \angle EAD = 20\degree + 20\degree = 40\degree .


例<2>\Large\texttt{例<2>}

如图,AB=BC=CD,  B=150°,C=90°,AB = BC = CD ,\;\angle B = 150\degree , \angle C = 90\degree ,A.\angle A .


解:还是底边造正三角形。

同理ED=EC=DC=EA=AB=BC,  ABCEED = EC = DC = EA = AB = BC ,\;\therefore ABCE为菱形,

AEC=B=150°,  EAB=ECB=30°.\therefore \angle AEC = \angle B = 150\degree ,\;\angle EAB = \angle ECB = 30\degree .

AEC=150°,  DEC=60°,  AED=150°,\because \angle AEC = 150\degree , \;\angle DEC = 60\degree ,\;\therefore \angle AED = 150\degree ,

EA=ED,  EAD=EDA=15°.\because EA = ED,\;\therefore \angle EAD = \angle EDA = 15\degree .

A=DAE+BAE=15°+30°=45°.\therefore \angle A = \angle DAE + \angle BAE = 15\degree + 30\degree = 45\degree .


例<3>\Large\texttt{例<3>}

如图,AB=BC=CD,  C=170°,B=70°,AB = BC = CD ,\;\angle C = 170\degree , \angle B = 70\degree ,D.\angle D .

我猜我题目没念完你都算出来了。

好,有了三题,我们已经可以对这一种情况总结出通式了:

在凸四边形ABCDABCD中,AB=BC=CD,B+C=240°,AB=BC=CD,\angle B +\angle C = 240\degree ,则剩下两个角较小的一个为12B.\frac{1}{2} \angle B.


小拓展!\large\textsf{小拓展!}

第二题其实有一种更简单的做法:

如图,往左构造正方形DCBEDCBE,连接EA.EA.

ABE=ABCEBC=60°,  \angle ABE = \angle ABC - \angle EBC = 60\degree ,\;AB=BC=BE,  ABEAB = BC = BE ,\;\therefore \triangle ABE为正三角形。

AED=60°+90°=150°,  \therefore \angle AED = 60\degree + 90\degree = 150\degree ,\;又因为AE=AD,  EAD=EDA=15°,AE = AD ,\;\therefore \angle EAD = \angle EDA = 15\degree ,

DAB=EABEAD=60°15°=45°.\therefore \angle DAB = \angle EAB - \angle EAD = 60\degree - 15\degree = 45\degree .

然而不通用pwp


但这也只是一种情况……

例<4>\Large\texttt{例<4>}

如图,CA=AB=BD,  A=20°,B=100°,CA = AB = BD ,\;\angle A = 20\degree , \angle B = 100\degree ,D.\angle D .


解:继续底边造等边三角形。造完以后,连接EC、ED。

易得AE=BE=AB=AC=BD,  EAC=EABCAB=40°,AE = BE = AB = AC = BD ,\;\angle EAC = \angle EAB - \angle CAB = 40\degree ,

ACB=ABC=80°,  ACE=AEC=70°,ECB=ACE+ACB=150°.\therefore \angle ACB = \angle ABC = 80\degree ,\;\angle ACE = \angle AEC = 70\degree ,\angle ECB = \angle ACE + \angle ACB = 150\degree .

DBE=ABDABE=40°,  DBC=ABDABC=20°,  DBC=EBC=20°\angle DBE = \angle ABD - \angle ABE = 40\degree ,\;\angle DBC = \angle ABD - \angle ABC = 20 \degree ,\;\therefore \angle DBC = \angle EBC = 20\degree

EB=DB,  CB\because EB = DB ,\;CB为公共边,CBECBD  (SAS)\therefore \triangle CBE \cong \triangle CBD \;(SAS)

DCB=ECB=150°,  ECD=360°DCBECB=60°.\therefore \angle DCB = \angle ECB = 150\degree ,\;\angle ECD = 360\degree - \angle DCB - \angle ECB =60\degree .

EC=DC,  ECD\because EC = DC ,\;\therefore \triangle ECD为等边三角形,  EDC=60°.,\;\therefore \angle EDC = 60\degree .

CDB=EDBEDC=10°.\therefore \angle CDB = \angle EDB - \angle EDC = 10\degree .


例<5>\Large\texttt{例<5>}

如图,AB=BC=CD,  C=10°,B=110°,AB = BC = CD ,\;\angle C = 10\degree , \angle B = 110\degree ,D.\angle D .

我都懒得描述辅助线了。你们猜猜辅助线是什么?


解:还是底边造等边三角形。造完以后,仍然连接EA、ED。

同理可以得EDB=150°,  EDBADB  (SAS),  \angle EDB = 150\degree ,\;\therefore \triangle EDB \cong \triangle ADB \;(SAS),\;

ECD\triangle ECD为等边三角形,  DAB=EABEAD=5°.,\;\angle DAB = \angle EAB - \angle EAD = 5\degree .

于是我们出了第二个通式:

在凹四边形ABCDABCD中,AB=BC=CD,B+C=120°,AB=BC=CD,\angle B +\angle C = 120\degree ,则剩下的锐角为12C.\frac{1}{2} \angle C.


看累了?来张图洗洗眼睛吧awa


不急,我们没完呢!

例<5>\Large\texttt{例<5>}

如图,AB=BC=CD,  C=70°,B=50°,AB = BC = CD ,\;\angle C = 70\degree , \angle B = 50\degree ,D.\angle D .

你体验过一招打遍天下的快感嘛?


解:依然是底边造等边三角形。造完以后,连接EC。

AE=BE=AB=BC=CD,  EBC=EBACBA=10°AE = BE = AB = BC = CD ,\;\angle EBC = \angle EBA - \angle CBA = 10\degree

AFB=FEB+FBE=60°+10°=70°=DCB,  CDEA,  \therefore \angle AFB = \angle FEB + \angle FBE = 60\degree + 10\degree = 70\degree = \angle DCB ,\;\therefore CD \parallel EA ,\;

BCE=BEC=85°,  DCE=155°.\angle BCE = \angle BEC = 85\degree ,\;\therefore \angle DCE = 155\degree .

CD=EA,  CDAE  \because CD = EA ,\;\therefore CDAE\; 是平行四边形!

D+ACE=180°,  D=25°!\therefore \angle D +\angle ACE = 180\degree ,\;\angle D = 25\degree !


例<6>\Large\texttt{例<6>}

如图,AB=BC=CD,  C=80°,B=40°,AB = BC = CD ,\;\angle C = 80\degree , \angle B = 40\degree ,D.\angle D .

享受切题的乐趣!


解:仍然是底边造等边三角形。造完以后,连接EC。

同理得DCE=160°,  DCEA  \angle DCE = 160\degree ,\;DCEA \; 为平行四边形,D=180°DCE=20°.\angle D = 180\degree - \angle DCE = 20\degree .

出现了!第三个通式!

在凹四边形ABCDABCD中,AB=BC=CD,B+C=120°,AB=BC=CD,\angle B +\angle C = 120\degree ,则剩下的锐角为12B.\frac{1}{2} \angle B.


我们还可以继续!

例<7>\Large\texttt{例<7>}

如图,AB=BC=CD,  EAB = BC = CD ,\;EACACBDBD交点,AEB=60°,  \angle AEB = 60\degree ,\;求证:EA=ED.EA = ED.

依旧是造正三角形,只不过这题如何构造比较不容易想到。


法<1>\large\texttt{法<1>}

向右构造正三角形AEFAEF,易得E,B,FE,B,F共线。

EAB=ECB=α,  BDC=DBC=β.\angle EAB = \angle ECB = \alpha ,\;\angle BDC = \angle DBC = \beta.

BEC\triangle BEC 中,ECB+EBC=AEB\angle ECB + \angle EBC = \angle AEB,即α+β=AEB=60°;\alpha + \beta = \angle AEB = 60\degree ;

EAB+FAB=EAF\angle EAB + \angle FAB = \angle EAF,即α+BAF=60°,  BAF=β.\alpha + \angle BAF = 60\degree ,\;\therefore \angle BAF = \beta .

FAB=EDC=β,  BA=CD,  F=DEC=60°,  FABEDC,\angle FAB = \angle EDC =\beta ,\;BA = CD ,\; \angle F = \angle DEC = 60\degree ,\; \therefore \triangle FAB \cong \triangle EDC ,

EA=AE=ED.\therefore EA = AE = ED . 得证。


法<2>\large\texttt{法<2>}

我这次向内构造两个正三角形CEF\triangle CEFBEG,\triangle BEG ,

同理倒角,可得GABFCD,\triangle GAB \cong \triangle FCD ,

EA=AG+GE=AG+GB=FC+DF=FE+DF=DE.\therefore EA = AG + GE = AG + GB = FC + DF = FE + DF = DE .得证。

其实这里还有一对全等DFCBEC\triangle DFC \cong \triangle BEC,但是没用上。


小拓展!\large\texttt{小拓展!}

脱离正三角形了哦qwq

如图,AB=BC=CD,  EAB = BC = CD ,\;EACACBDBD交点,AEB=45°,  \angle AEB = 45\degree ,\;求证:BD=2AE.BD = \sqrt{2}AE.

你一看到六十度变成了45度,该构造啥?


其实把正三角形换成等腰直角三角形就可以啦awa

解:向右构造等腰直角三角形AEFAEF,易得E,B,FE,B,F共线;作GCBDGC\perp BDDD.

EAB=ECB=α,  BDC=DBC=β.\angle EAB = \angle ECB = \alpha ,\;\angle BDC = \angle DBC = \beta.

BEC\triangle BEC 中,ECB+EBC=AEB\angle ECB + \angle EBC = \angle AEB,即α+β=AEB=45°;\alpha + \beta = \angle AEB = 45\degree ;

EAB+FAB=EAF\angle EAB + \angle FAB = \angle EAF,即α+BAF=45°,  BAF=β.\alpha + \angle BAF = 45\degree ,\;\therefore \angle BAF = \beta .

FAB=GBC=β,  BA=CB,  F=CGB=90°,  FABGBC,  AF=BG.\angle FAB = \angle GBC =\beta ,\;BA = CB ,\; \angle F = \angle CGB = 90\degree ,\; \therefore \triangle FAB \cong \triangle GBC ,\;\therefore AF = BG.

由于三线合一,$ DG = BG = AF.$

EA=2AF,  BD=2BF,  BD=2AE.EA = \sqrt{2} AF,\;BD = 2BF ,\;\therefore BD = \sqrt{2}AE. 得证。

另一种方法同理。

这里没用上的全等就有用了!

DGCBEC,  BE=DG,\triangle DGC \cong \triangle BEC ,\;\therefore BE = DG,

AE=AF+FE=GC+2BE=22(GE+2BE)=22BD.\therefore AE = AF + FE = GC + \sqrt{2}BE = \frac{\sqrt{2}}{2}(GE + 2BE) = \frac{\sqrt{2}}{2} BD .


总结\huge\textsf{总结}

Summary!\small\texttt{Summary!}

总结起来就是遇到两个角和是60°\degree的倍数的时候就作正三角形吧。

为什么是60°\degree的倍数的时候作正三角形,我猜这样才能和正三角形挂钩。

至于结论为什么都是二倍角,就不得而知了,可能只是巧合。


附录:

1.画图软件:Desmos
几何区

2.参考资料:暂时没在网络上找到相应资料

3.转载请注明出处 (虽然应该不会有人来抄我这个小菜鸡的文章XD)\tiny\textbf{(虽然应该不会有人来抄我这个小菜鸡的文章XD)}

发布了11 篇原创文章 · 获赞 1 · 访问量 1104
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览