《剑指offer》面试题68:树中两个节点的最低公共祖先

题目:树中两个节点的最低公共祖先

输入一棵树的根节点,输入两个被观察节点,求这两个节点的最低(最近)公共祖先。

思路:

此题比较开放,主要是对于“树”没有做明确说明,所以原书中就对树的可能情况做了假设,然后就衍生出多种思路。
1.如果是二叉搜索树
遍历找到比第一个节点大,比第二个节点小的节点即可。
以下是java参考代码:

      //特殊情况一:当树是一颗二叉搜索树
    public static TreeNode lowparent(TreeNode root,TreeNode root1,TreeNode root2){
        if(root==null||root1==null||root2==null) return null;
        if(root1.val==root.val||root2.val==root.val) return root;//其中一个节点为根节点
        if(root1.val<root.val){
            if(root2.val>root.val) return root;
            else
                return lowparent(root.left,root1,root2);
        }else{
            if(root2.val<root.val) return root;
            return lowparent(root.right,root1,root2);
        }
    }

2.如果是父子间有双向指针的树
由下往上看,转化为找两个链表的第一个公共节点问题

/*
*分别遍历两个链表,得到分别对应的长度。然后求长度的差值,把较长的那个链表向后移动这个差值的个数,
*然后一一比较即可。
*/
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        if (headA == null || headB == null) return null;
        int lenA = getLength(headA), lenB = getLength(headB);
        if (lenA > lenB) {//让长的链表先走多出的长度
            for (int i = 0; i < lenA - lenB; ++i) headA = headA.next;
        } else {
            for (int i = 0; i < lenB - lenA; ++i) headB = headB.next;
        }
        while (headA != null && headB != null && headA != headB) {//需要判断两个节点都非空。
            headA = headA.next;
            headB = headB.next;
        }
        return (headA != null && headB != null) ? headA : null;
    }
    public int getLength(ListNode head) {//求链表的长度
        int cnt = 0;
        while (head != null) {
            ++cnt;
            head = head.next;
        }
        return cnt;
    }
}
/*
*用环的思想来做,我们让两条链表分别从各自的开头开始往后遍历,当其中一条遍历到末尾时,
*我们跳到另一个条链表的开头继续遍历。
*/
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        if (headA == null || headB == null) return null;
        ListNode a = headA, b = headB;
        while (a != b) {
            a = (a != null) ? a.next : headB;
            b = (b != null) ? b.next : headA;
        }
        return a;
    }
}

参考处求两个链表的交点(第一个公共节点)

3.如果只是一个包含父到子的指针的普通树
3.1)如果不能使用额外空间,从根节点开始判断他的子树是否包含那两个节点,找到最小的的子树即可
时间复杂度o(n^2)(此为最差,平均不太好算。。。),空间复杂度为o(1)
3.2) 如果能用额外空间,可以遍历两次(深度优先)获取根节点到那两个节点的路径,然后求两个路径的最后一个公共节点
时间复杂度o(n),空间复杂度o(logn)。
下面仅对(3),以下图所示的树为例,进行思路实现与求解验证

						A
                      /   \
                     B     C 
                  /     \
                D        E 
               / \     / | \
              F   G  H   I   J

基于以上思路,java参考代码如下:
第一种解法的参考代码:

    TreeNode getLastCommonParent(TreeNode root,TreeNode t1,TreeNode t2){
        if(findNode(root.left,t1)){//t1在左
            if(findNode(root.right,t2)){//t2在右,则直接输出根节点
                return root;
            }else{
                return getLastCommonParent(root.left,t1,t2);//t1和t2都在左边,在根节点的左子树中找
            }
        }else{
            if(findNode(root.left,t2)){
                return root;
            }else{
                return getLastCommonParent(root.right,t1,t2)
            }
        }
    }
    // 查找节点node是否在当前 二叉树中
    boolean findNode(TreeNode root,TreeNode node){
        if(root == null || node == null){
            return false;
        }
        if(root == node){
            return true;
        }
        boolean found = findNode(root.left,node);
        if(!found){
            found = findNode(root.right,node);
        }
        return found;//最后需要返回found值,判断是否存在node
    }

参考处面试中的二叉树问题集

import java.util.*;

public class CommonParentInTree {
    public static class CommonTreeNode{//定义一棵普通的树
        public char val;
        public List<CommonTreeNode> children;
        public CommonTreeNode(char val){
            this.val = val;
            children = new LinkedList<>();
        }
        public void addChildren(CommonTreeNode... children){//java中多参数的传递方法...
            for(CommonTreeNode child:children)
                this.children.add(child);
        }
    }
    // 3.1所述的解法
    public static CommonTreeNode getLastParent1(CommonTreeNode root,CommonTreeNode node1,CommonTreeNode node2){
        if(root==null || node1==null || node2==null || !isInSubTree(root,node1,node2))
            return null;
        CommonTreeNode curNode = root;
        while (true){
            for(CommonTreeNode child:curNode.children){//遍历当前节点的所有子树
                if(isInSubTree(child,node1,node2)){
                    curNode = child;
                    break;
                }
                if(child==curNode.children.get(curNode.children.size()-1))
                    return curNode;
            }
        }
    }
    public static boolean isInSubTree(CommonTreeNode root,CommonTreeNode node1,CommonTreeNode node2){
        Queue<CommonTreeNode> queue = new LinkedList<>();
        CommonTreeNode temp = null;
        int count = 0;
        queue.add(root);
        while (count!=2 && !queue.isEmpty()){
            temp = queue.poll();
            if(temp==node1||temp==node2)
                count++;
            if(!temp.children.isEmpty())
                queue.addAll(temp.children);
        }
        if(count==2)
            return true;
        return false;
    }
    // 3.2所述的解法
    public static CommonTreeNode getLastParent2(CommonTreeNode root,CommonTreeNode node1,CommonTreeNode node2){
        List<CommonTreeNode> path1 = new ArrayList<>();
        List<CommonTreeNode> path2 = new ArrayList<>();
        getPath(root,node1,path1);
        getPath(root,node2,path2);
        CommonTreeNode lastParent = null;
        for(int i=0;i<path1.size()&&i<path2.size();i++){
            if(path1.get(i)==path2.get(i))
                lastParent = path1.get(i);
            else
                break;
        }
        return lastParent;
    }
    public static boolean getPath(CommonTreeNode root,CommonTreeNode node,List<CommonTreeNode> curPath){
        if(root==node)
            return true;
        curPath.add(root);
        for(CommonTreeNode child:root.children){
            if(getPath(child,node,curPath))
                return true;
        }
        curPath.remove(curPath.size()-1);
        return false;
    }

    public static void main(String[] args){
        CommonTreeNode root = new CommonTreeNode('A');
        CommonTreeNode b = new CommonTreeNode('B');
        CommonTreeNode c = new CommonTreeNode('C');
        CommonTreeNode d = new CommonTreeNode('D');
        CommonTreeNode e = new CommonTreeNode('E');
        CommonTreeNode f = new CommonTreeNode('F');
        CommonTreeNode g = new CommonTreeNode('G');
        CommonTreeNode h = new CommonTreeNode('H');
        CommonTreeNode i = new CommonTreeNode('I');
        CommonTreeNode j = new CommonTreeNode('J');
        root.addChildren(b,c);
        b.addChildren(d,e);
        d.addChildren(f,g);
        e.addChildren(h,i,j);
        System.out.println(getLastParent1(root,f,h).val);
        System.out.println(getLastParent2(root,f,h).val);
        System.out.println(getLastParent1(root,h,i).val);
        System.out.println(getLastParent2(root,h,i).val);

    }
}
测试用例:

a.功能测试(普通形态的树;形状退化成链状的树)。
b.特殊输入测试(指向树根节点的指针为null指针)。

参考:

https://www.jianshu.com/p/edffe43abc14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值