HDU1421搬寝室解题思路

搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2k件过去就行了.但还是会很累,因为2k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2= 9.
现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.

Input
每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数).
Output
对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行. Sample Input
2 1
1 3
Sample Output
4
https://blog.csdn.net/moqihao/article/details/27548231
思路:
用数组a[ ]来保存初始数据,数组shifts[j][i]表示从一共i个数据中取出j对。 首先要理解与一个物品重量差值最小的一定是与它相邻的另一个物品,所以第一步是对这些重量排序。
接下来总结状态转移方程: 假设k=1,n=2.即从2个物品中拿出1对。
那么shifts[1][2]=(a[2]-a[1])^2. 假设k=1,n=3.即从3个物品中拿出1对。
那么shifts[1][3]=shifts[1][2]和(a[3]-a[2])^2中最小的一个。即前两个{1,2}中最小的一对或者后两个{2,3}中最小的一对,即最后一对。不可能是(1,3).
假设k=2,n=3.即从3个物品中拿出2对。
Impossible! shifts[2][3]=INFINITY.
假设k=1,n=4.即从4个物品中拿出1对。
那么shifts[1][4]=shifts[1][3]和(a[4]-a[3])^2中最小的一个。即前三个{1,2,3}中最小的一对或者最后一对。
假设k=2,n=4.即从4个物品中拿出2对。
那么shifts[2][4]=shifts[2][3]和shifts[1][2]+(a[4]-a[3])^2中最小的一个。即前三个{1,2,3}中最小的两对或者前两个中最小的一对加最后一对。
假设k=1,n=5.即从5个物品中拿出1对。
那么shifts[1][5]=shifts[1][4]和(a[5]-a[4])^2中最小的一个。即前四个{1,2,3,4}中最小的一对或者最后一对。
假设k=2,n=5.即从5个物品中拿出2对。
那么shifts[2][5]=shifts[2][4]和shifts[1][3]+(a[4]-a[3])^2中最小的一个。即前四个{1,2,3,4}中最小的两对或者前三个中最小的一对加最后一对。
……假设k=j,n=i.即从i个物品中拿出j对。
那么shifts[j][i]=shifts[j][i-1]和shifts[j-1][i-2]+(a[i]-a[i-1])^2中最小的一个。即前i-1个{1,2,…,i-1}中最小的j对或者前i-2个中最小的j-1对加最后一对。
则状态转移方程为:
shifts[j][i]=min(shifts[j][i-1],shifts[j-1][i-2]+(a[i]-a[i-1])^2);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值