习题4.3 是否二叉搜索树
本题要求实现函数,判断给定二叉树是否二叉搜索树。
函数接口定义:
bool IsBST ( BinTree T );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数IsBST须判断给定的T是否二叉搜索树,即满足如下定义的二叉树:
定义:一个二叉搜索树是一棵二叉树,它可以为空。如果不为空,它将满足以下性质:
- 非空左子树的所有键值小于其根结点的键值。
- 非空右子树的所有键值大于其根结点的键值。
- 左、右子树都是二叉搜索树。
如果T是二叉搜索树,则函数返回true,否则返回false。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef enum { false, true } bool;
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
BinTree BuildTree(); /* 由裁判实现,细节不表 */
bool IsBST ( BinTree T );
int main()
{
BinTree T;
T = BuildTree();
if ( IsBST(T) ) printf("Yes\n");
else printf("No\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例1:如下图

输出样例1:
Yes
输入样例2:如下图

输出样例2:
No
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
参考代码:
bool IsBST ( BinTree T ){
if(T == NULL){
return true;
}else if(T->Left == NULL && T->Right == NULL){
return true;
}else if(T->Left){
if(T->Left->Data >= T->Data){
return false;
}else if(T->Left->Right){
if(T->Left->Right->Data >= T->Data){
return false;
}
}
}else if(T->Right){
if(T->Right->Data <= T->Data){
return false;
}else if(T->Right->Left){
if(T->Right->Left->Data <= T->Data){
return false;
}
}
}
if(IsBST(T->Left)&&IsBST(T->Right)){
return true;
}
return false;
}
提交测试结果:


文章提供了一个C语言实现的函数IsBST,用于判断给定的二叉树是否符合二叉搜索树的定义。二叉搜索树的特性是左子树所有节点小于根节点,右子树所有节点大于根节点。函数通过递归方式检查每个节点的值与子节点的关系来完成验证。
153

被折叠的 条评论
为什么被折叠?



