投笔丶从戎
码龄6年
关注
提问 私信
  • 博客:372,890
    社区:1
    动态:1
    372,892
    总访问量
  • 75
    原创
  • 150,784
    排名
  • 6,593
    粉丝
  • 82
    铁粉

个人简介:PuTTY 本无树,MinGW 亦非台。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2018-10-25
博客简介:

投笔丶从戎的博客

博客描述:
时不时会偷懒の技术人
查看详细资料
  • 原力等级
    当前等级
    5
    当前总分
    1,865
    当月
    7
个人成就
  • 获得336次点赞
  • 内容获得101次评论
  • 获得1,155次收藏
  • 代码片获得5,323次分享
创作历程
  • 1篇
    2024年
  • 11篇
    2023年
  • 20篇
    2022年
  • 26篇
    2021年
  • 13篇
    2020年
  • 4篇
    2019年
成就勋章
TA的专栏
  • 机器学习
    17篇
  • 嵌入式
    9篇
  • Android
    7篇
  • Python
    3篇
  • Linux
    11篇
  • 日常问题
    2篇
  • Java
    2篇
  • Scrcpy
    1篇
  • Chrome扩展程序
    7篇
  • 数据挖掘
    4篇
  • SDN
    4篇
  • 数据库
    4篇
  • Matlab
    2篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflow图像处理nlp数据分析
  • 嵌入式
    单片机嵌入式硬件
  • 软件工程
    性能优化
  • 网络空间安全
    系统安全web安全安全架构
  • 用户体验设计
    uxui
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

#Android开发杂记--新版安卓(SDK>=29)中的文件读写方法

它提供了一种标准化的方式,让应用程序能够与设备的存储空间(包括内部存储和外部存储,如SD卡)进行交互,而无需了解具体的文件系统路径或权限细节。使用Storage Access Framework,应用程序可以获得用户授权来访问设备上的文件,而无需直接请求文件系统权限。它提供了一种统一的接口,让应用程序可以访问和操作各种类型的数据,包括数据库、文件系统、网络资源等。在新版本的安卓中想要进行文件读写可真不是一件容易的事,笔者翻阅了无数文档后,最终找到了最简单的方法,并且不需要申请任何权限,包括上述两个权限。
原创
发布博客 2024.05.26 ·
577 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

#Python杂记--将Python3的源码编译为.so文件方法与Linux环境下的交叉编译方法

众所周知,Python 是跨平台的解释性语言,我们可以将 Python 源码文件不做任何修改的移动到其他平台上运行。上述方法只能生成本机操作系统和处理器架构下的 so 文件,如果想要生成其它平台和处理器架构的 so 文件,就需要使用交叉编译,笔者在此记录一下实现方法。注:笔者使用的是 ubuntu 22.04 处理器架构为 aarch64,想要生成 ubuntu 22.04 处理器架构为 x86_64 的 so 文件。4.构建交叉编译环境。
原创
发布博客 2023.11.07 ·
1415 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

#机器学习--深度学习中的优化

这个问题仍然是学术界的热点问题,但是学者们现在猜想,对于足够大的神经网络而言,大部分局部极小值都具有很小的代价函数,我们能不能找到真正的全局最小点并不重要,而是需要在参数空间中找到一个代价很小(但不是最小)的点。位于正特征值对应的特征向量方向的点比鞍点有更大的代价,反之,位于负特征值对应的特征向量方向的点有更小的代价。有些凸函数的底部是一个平坦的区域,而不是单一的全局最小点,但该平坦区域中的任意点都是一个可以接受的解。如果具有很大代价的局部极小值是常见的,那么这将给基于梯度的优化算法带来极大的问题。
原创
发布博客 2023.05.31 ·
1199 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

#机器学习--深度学习中的正则化

(2)重投影实现的显式约束对优化过程增加了一定的稳定性:当使用较高的学习率时,很可能进入正反馈,即大的权重诱导大梯度,然后使得权重获得较大更新,从而让网络更快地探索参数空间,而且同时还不会让权重脱离限制区域。:到了测试阶段,就不能再使用 Dropout 了,因为这会导致模型不稳定,即每一次相同的输入会产生不同的输出。Bagging 中的所有模型都是独立的,但在 Dropout 的情况下,所有模型。,这样做的显著优点是,只有参数的子集需要被存储在内存中,可以显著减少模型的内存占用。
原创
发布博客 2023.05.20 ·
919 阅读 ·
4 点赞 ·
2 评论 ·
2 收藏

#机器学习--重新看待线性回归

从最终结果来看,两者之间的优化目标是一样的,但从本质上来讲,最小二乘法只是最大似然在正态分布下的一种特殊情况。如果假设其它分布则会有不同的结果,如:伯努利分布下,最大似然估计的结果就是逻辑回归。多项式分布下,最大似然估计的结果就是softmax回归。感兴趣的读者可以自行证明。
原创
发布博客 2023.05.17 ·
781 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏

#Chrome扩展程序开发教程--07:消息传递

因为 content scripts 是注入到网页中运行的,不能直接和扩展程序其它部分共享环境和变量,所以需要一些方式来与扩展程序的其它部分进行通信。扩展程序中的任何一方都可以监听从另一端发出的消息,并在同一通道上作出回应。消息可以是任何有效的 JSON 对象(null、布尔值、数字、字符串、数组或对象)。
原创
发布博客 2023.04.22 ·
2126 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

#Chrome扩展程序开发教程--06:Content scripts

Content scripts 是注入到网页中运行的 JavaScript 文件。它可以使用标准的 Document Object Model(DOM)对象来访问网页中内容并对其进行修改。由于安全等原因 content scripts 的运行环境和网页内容本身是隔离的,也就是说网页本身所创建对象和函数,在 content scripts 中是无法访问的,反之亦然。
原创
发布博客 2023.04.22 ·
3381 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

#Chrome扩展程序开发教程--05:Service worker

service worker 是一个基于事件的脚本,在后台运行,通常用来协调扩展程序中不同部分的任务和监听浏览器事件,如:扩展程序被安装、打开页面、关闭页面,创建新标签、添加新书签、点击扩展工具栏图标等。service worker 可以使用所有的Chrome API,但 service worker 不能直接与网页的内容直接进行交互,需要与 content scripts 进行通信来间接修改网页的内容(第一章中有介绍)。
原创
发布博客 2023.04.22 ·
1966 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

#Chrome扩展程序开发教程--04:权限申请

实现基本功能所需要的必须权限。实现其它功能所需要的可选权限。更安全,最小权限原则。更有说服力,只有当用户启用指定功能时才请求指定权限,让用户能够更好地理解需要授权的权限背后的含义。更容易升级,如果在新的版本中新增了必须权限,则 Chrome 会自动禁用该扩展,但新增可选权限不会。
原创
发布博客 2023.04.22 ·
3765 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

#Chrome扩展程序开发教程--03:Manifest

所有的扩展程序必须在根目录中包含且只包含一个 manifest.json 文件。这个文件我们通常称为清单文件,里面记录了关于这个扩展程序的所有元数据:使用的文件,需要的权限,谁来处理事件,谁来处理网页等。本章中笔者对 manifest.json 中所有属性进行了总结,并按照重要性划分成了四部分。
原创
发布博客 2023.04.22 ·
2656 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

#Chrome扩展程序开发教程--02:Hello Extensions

这里面的 “action” 用以告诉 Chrome 我们的扩展程序的图标是 hello_extensions.png,并且当用户点击图标时,应当弹出 hello.html 窗口。当我们修改了扩展程序后,为了在浏览器中看到这一变化,必须刷新扩展程序。点击扩展程序的图标(工具栏图标),就可以看到 Hello Extensions 的 popup 窗口了。默认情况下,当在本地加载扩展程序时,它将出现在扩展菜单中。,可以将你的扩展程序固定在工具条上,以便在开发过程中快速访问。4.在 Chrome 中进入。
原创
发布博客 2023.04.22 ·
743 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

#Chrome扩展程序开发教程--01:基本概念介绍

引言1、什么是扩展程序?2、Web技术3、Chrome 扩展程序API4、扩展程序架构生产力工具丰富网页网页内容信息聚合。
原创
发布博客 2023.04.22 ·
998 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

#Linux杂记--Ubuntu 22.04 从源码安装 Python3.11 记录

直接用包管理工具或者 conda 往往无法安装最新的 Python 版本,比如这次的 Python3.11,或者其它处理器下(ARM等)没有想要的版本的 Python,此时我们就需要从源码进行编译安装了。这里记录一下在一个崭新的 Ubuntu 22.04 系统中从源码编译安装 Python 的过程。
原创
发布博客 2022.11.13 ·
3146 阅读 ·
2 点赞 ·
0 评论 ·
16 收藏

#机器学习--补充数学基础--信息论

本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。用来衡量整个概率分布中的不确定性总量,即遵循这个分布的事件所产生的期望信息总量。表示若一件事发生的概率越低,那么其包含的信息量也就越大。是为了衡量某件事情发生所包含的信息多少。若是连续型随机变量,香农熵被称为。来衡量这两个分布的差异。有两个单独的概率分布。
原创
发布博客 2022.09.20 ·
520 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

#Python杂记--Selenium Chrome截取整个页面的图片的办法

首先我们先了解一下什么是Chrome的CDP协议,CDP(Chrome DevTools Protocol) 允许我们检测,调试Chromium, Chrome 和其他基于 Blink的 浏览器. 这个协议被广泛使用. 其中最著名的是 Chrome DevTools,协议的api也由这个团队维护(摘自百度百科)。点击后,在弹出的框中搜索captureScreenshot,即可找到相关功能,我们点击其中的capture full size screenshot,就能截图整个界面了。..............
原创
发布博客 2022.08.16 ·
3003 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

#机器学习--实例--基于梯度优化的线性最小二乘法

本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。使得值到直线的误差最小,因此我们需要采用梯度下降算法来找到最小化下式的。读者可以自行调参尝试,以获得更优解。,目标是找到一条直线。...
原创
发布博客 2022.08.09 ·
516 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

#机器学习--补充数学基础--概率论

5)当我们知道了一组变量的联合概率分布,但想要了解其中一个子集的概率分布,这种定义在子集上的概率分布被称为。来表示,PMF将随机变量能够取到的每个状态映射到随机变量取得该状态的概率,例如。是可以随机地取不同值的变量,我们通常使用无格式字体中的小写字母,如。用来描述随机变量或一簇随机变量在每一个可能取到的状态的可能性大小。,有时候,我们希望概率分布中的所有质量都集中在一个点上,可以通过。的每一个值都可以写成乘积的形式,那么这两个随机变量。来表示随机变量能够取到的值,即一个可能的取值。......
原创
发布博客 2022.08.09 ·
650 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

#机器学习--实例--主成分分析

主成分分析(principal components analysis,PCA)是一个简单的机器学习算法,能够在损失精度尽可能少的前提下,对数据进行有损压缩。
原创
发布博客 2022.08.08 ·
418 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

#机器学习--补充数学基础--线性代数

正如我们可以通过分解质因数得出整数的一内在些性质,我们也可以通过分解矩阵来发现矩阵表示成数组元素时不明显的函数性质。由于特征分解只能适用于方阵,且某些情况下会涉及复数而非实数,因此为了能够对任意实数矩阵进行分解,提出了另一种分解方式,即。有时候我们可能也希望衡量矩阵的大小,通常使用F(Frobenius)范数,即。一般的,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为。的每一行相加,这种简写方法使我们无须在加法操作前定义一个将向量。具有相同的特征值,因此通常我们讨论特征向量时只考虑单位特征向量。.
原创
发布博客 2022.08.07 ·
612 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

#机器学习--高等数学基础--第五章:多元函数微分法

本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。 定义1:设 DDD 是 R2R^{2}R2 的一个非空子集,称映射 f:D→Rf:D\to Rf:D→R 为定义在 DDD 上的二元函数,通常记为 z=f(x,y),(x,y)∈Dz=f(x,y),(x,y)\in Dz=f(x,y),(x,y)∈D 或 z=f(P),P∈Dz=f(P),P\in Dz=f(P),P∈D ,其中点集 DDD 称为该函数的定义域, xxx 和 yyy 称为
原创
发布博客 2022.08.06 ·
365 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多