qq_43520313
码龄6年
关注
提问 私信
  • 博客:47,606
    47,606
    总访问量
  • 126
    原创
  • 497,667
    排名
  • 129
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-10-25
博客简介:

qq_43520313的博客

查看详细资料
个人成就
  • 获得27次点赞
  • 内容获得7次评论
  • 获得63次收藏
创作历程
  • 21篇
    2021年
  • 107篇
    2020年
成就勋章
TA的专栏
  • ------出题------
    4篇
  • ------数据结构------
    8篇
  • 树形结构
    4篇
  • ------思维------
    6篇
  • ------博客------
  • ------图论------
    4篇
  • 差分约束
    1篇
  • 网络流
    2篇
  • ------dp------
    10篇
  • 线性dp
    12篇
  • 换根dp
    1篇
  • 树形dp
  • 单调队列dp
  • 四边形不等式
  • ------数学------
    24篇
  • 线性代数
    2篇
  • 初等数论
    12篇
  • 莫比乌斯反演,杜教筛,迪利克雷卷积
    11篇
  • 组合数学
    34篇
  • 反演
    6篇
  • 鸽巢原理
    1篇
  • 卡特兰数
    2篇
  • 递推公式
    3篇
  • 单位根反演
  • 生成函数
    6篇
  • 多项式
    12篇
  • 快速莫比乌斯变换 快速沃尔什变换
    3篇
  • 拉格朗日插值
    3篇
  • 快速数论变换NTT
    1篇
  • 快速傅里叶变换
    3篇
  • 分治FFT
    3篇
  • 概率期望
    21篇
  • 循环概率期望
    3篇
  • 微积分
    1篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

网络流模板

https://www.luogu.com.cn/problem/P3376#include<bits/stdc++.h>#define ll long longusing namespace std;const int N=209,M=5009;const ll inf=2e18;int ver[M<<1],head[N],ne[M<<1],tot=1,n,m,st,en,d[N];ll edge[M<<1],ans=0;void add(i
原创
发布博客 2021.04.10 ·
121 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线段树模板

https://www.luogu.com.cn/problem/P3373#include<bits/stdc++.h>#define ll long longusing namespace std;const int N=200009;int n,m;ll p,sum[N<<2],add[N<<2],mul[N<<2];void pushdown(int o){ int lc=o<<1,rc=o<<1|1;
原创
发布博客 2021.04.08 ·
142 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LCA模板

https://www.luogu.com.cn/problem/P3379#include<bits/stdc++.h>using namespace std;const int N=500009;int n,f[N][20],t,d[N],m,root;vector<int>w[N];void bfs() { queue<int>q; memset(d,0,sizeof(d)); d[root]=1,q.push(root);
原创
发布博客 2021.04.07 ·
145 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第一类斯特林数·行

题目求xn‾=∑i=0n[ni]xix^{\overline{n}}=\sum_{i=0}^{n}\begin{bmatrix}n\\i\end{bmatrix}x^ixn=i=0∑n​[ni​]xi在取模modmodmod意义下思路x2k‾=xk‾(x+k)k‾x^{\overline{2k}}=x^{\overline{k}}(x+k)^{\overline{k}}x2k=xk(x+k)k。假设知道xk‾x^{\overline{k}}xk就能快速求出(x+k)k‾(x+k)^{\over
原创
发布博客 2021.03.30 ·
139 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

D 动态序列

题目https://ac.nowcoder.com/acm/contest/13504/D给出n(1≤n≤100000)n(1\le n\le 100000)n(1≤n≤100000)个整数ai(1≤ai≤109)a_i(1\le a_i\le 10^9)ai​(1≤ai​≤109)的序列,有q(1≤q≤105)q(1\le q\le 10^5)q(1≤q≤105)个询问,设序列长度为lenlenlen,序号从111开始,每个询问有如下操作:1 b:序列中所有数乘以整数b(1≤b≤109)1
原创
发布博客 2021.03.28 ·
207 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

点值转下降幂

对于n−1n-1n−1次多项式f(x)f(x)f(x),给定a0,a1..an−1a_0,a_1..a_{n-1}a0​,a1​..an−1​,其中ai=f(i)a_i=f(i)ai​=f(i),求f(x)f(x)f(x)得下降幂表示。即f(x)=∑i=0n−1fixi‾[x≥i]f(x)=\sum_{i=0}^{n-1}f_ix^{\underline{i}}[x\ge i]f(x)=i=0∑n−1​fi​xi​[x≥i]求出fif_ifi​f(i)=∑j=0n−1fjij‾[i≥j]0≤i≤n
原创
发布博客 2021.03.28 ·
183 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

如何优雅地求和

题目https://uoj.ac/problem/269给定mmm次多项式f(x),n,xf(x),n,xf(x),n,x,求Q(f,n,x)=∑i=0nf(i)(ni)xi(1−x)n−iQ(f,n,x)=\sum_{i=0}^{n}f(i){n\choose i}x^i(1-x)^{n-i}Q(f,n,x)=i=0∑n​f(i)(in​)xi(1−x)n−if(x)f(x)f(x)给定点值表示法。n≤109n\le 10^9n≤109思路把多项式转换成下降幂表示,假设f(x)=∑i=0
原创
发布博客 2021.03.28 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

简单的函数

题目https://loj.ac/p/6053求∑i=1nf(i) mod 109+7\sum_{i=1}^{n}f(i)\ mod\ 10^9+7i=1∑n​f(i) mod 109+7f(1)=1f(1)=1f(1)=1f(pc)=p⊕cf(p^c)=p\oplus cf(pc)=p⊕c,ppp为质数f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b),(a,b)=1(a,b)=1(a,b)=1思路Min25Mi
原创
发布博客 2021.03.24 ·
84 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Sanrd

题目https://uoj.ac/problem/188求∑i=lrf(i)\sum_{i=l}^{r}f(i)i=l∑r​f(i)f(i)f(i)f(i)是iii的次大质因子,如果是素数或111,则为000。l+r≤1011l+r\le 10^{11}l+r≤1011思路考虑Min25Min25Min25筛时的SSS函数的dpdpdp,素数部分贡献是000,则只有合数的贡献S(n,j)=∑i=j+1π(n)∑e=1pie≤n(f(pie)[e>1]+∑k=2⌊npie⌋f(piek
原创
发布博客 2021.03.23 ·
149 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Biological Software Utilities

题目https://codeforces.com/gym/102956/problem/G给一个nnn,问有多少棵nnn个节点的树满足完美匹配。思路首先两两配对,nnn一定是偶数。另外每棵树只对应一种匹配方式,因为树的叶子节点一定选,选完后把多余的的边和点删掉,一直下去,这样每次选方案是唯一的。所以从配对方式考虑,那么nnn个点两两配对的方案数是n!2n2n2!\dfrac{n!}{2^{\frac{n}{2}}\frac{n}{2}!}22n​2n​!n!​然后每一对节点之间随意连边构成树
原创
发布博客 2021.03.22 ·
307 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Min_25筛

题目一般要求∑i=1nF(i)n≤1010\sum_{i=1}^{n}F(i)\quad n\le 10^{10}i=1∑n​F(i)n≤1010其中F(x)F(x)F(x)是积性函数。Min25Min25Min25筛能用的前提:质数处的f(p)f(p)f(p)值是关于ppp的低阶多项式,质数次方处的f(pe)f(p^e)f(pe)值可以快速计算。约定pip_ipi​表示第iii个素数,下标从111开始P\mathbb{P}P表示素数的集合π(n)\pi(n)π(n)表示1∼n1\sim
原创
发布博客 2021.03.21 ·
101 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Min_25筛模板

题目https://www.luogu.com.cn/problem/P5325定义积性函数f(x)f(x)f(x),且f(pk)=pk(pk−1)(p为质数)f(p^k)=p^k(p^k-1)(p为质数)f(pk)=pk(pk−1)(p为质数),求∑i=1nf(i)\sum_{i=1}^{n}f(i)i=1∑n​f(i)对109+710^9+7109+7取模。n≤1010n\le 10^{10}n≤1010。思路把f(p)=p2−pf(p)=p^2-pf(p)=p2−p拆成两个完全积性函
原创
发布博客 2021.03.18 ·
121 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[国家集训队]Tree I

题目https://www.luogu.com.cn/problem/P2619给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有needneedneed条白色边的生成树。题目保证有解。思路凸优化裸题,要注意的就是,优先选白色(优先选黑色也行),主要是同一斜率可能会切到很多点,那么就要有一个标准,要么选最小点,要么选最大。另外算答案时就乘上题目给的needneedneed。#include<bits/stdc++.h>#define ll long longusi
原创
发布博客 2021.03.16 ·
149 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Imprecise Computer

题目https://codeforces.com/gym/102920/problem/E有两轮操作,每一轮,让1∼n1\sim n1∼n中的每个数字kkk和其他所有数字进行比较大小,如果两个数字之差大于等于222则能正确的比较大小,否则随机认为某个数字大,令ri(k)r_i(k)ri​(k)为第iii轮时比kkk小的数字的个数,则dk=∣r1(k)−r2(k)∣d_k=|r_1(k)-r_2(k)|dk​=∣r1​(k)−r2​(k)∣,现在给定ddd数组,问你经过两轮操作后是否可能出现ddd数组这种
原创
发布博客 2021.03.15 ·
115 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

分治FFT模板

#include<bits/stdc++.h>#define ll long longusing namespace std;const double Pi=acos(-1.0);const int N=2100009;const ll mod=998244353,G=3;//G是mod的原根ll a[N],b[N],c[N],d[N],f[N],p[N],p1[N],Gi,_inv;//Gi是原根的逆元,inv是lim的逆元int n,m,bit,lim,r[N];//lim表示
原创
发布博客 2021.03.13 ·
87 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

frogs

https://blog.csdn.net/qingshui23/article/details/73091006
原创
发布博客 2021.03.10 ·
141 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

按位或

题目https://www.luogu.com.cn/problem/P3175刚开始你有一个数字000,每次给这个数按一定概率ororor上一个≤2n−1≤2^n−1≤2n−1的非负整数,第iii个数的概率为pip_ipi​,保证和为111问这个数字到2n−12^n−12n−1的期望ororor次数。n≤20n≤20n≤20思路把数字看成集合,用min−maxmin-maxmin−max反演E(max(S))=∑T⊆S(−1)∣T∣−1E(min(T))E(max(S))=\sum_{T\su
原创
发布博客 2021.03.09 ·
88 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Card Collector

题目有nnn种卡片,每一秒都有PiP_iPi​的概率获得一张第iii种卡片,求每张卡片都至少有一张的期望时间。思路令max(S)max(S)max(S)表示集合SSS中每种卡片第一次出现时间的最大值,则E(max(S))E(max(S))E(max(S))为所求的值。根据min−maxmin-maxmin−max反演E(max(S))=∑T⊆S(−1)∣T∣−1E(min(T))E(max(S))=\sum_{T\subseteq S}(-1)^{|T|-1}E(min(T))E(max(S))
原创
发布博客 2021.03.08 ·
100 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

反演

二项式反演∑i=jn(−1)i−j(ni)(ij)=(nj)[n−j=0]①\sum_{i=j}^{n}(-1)^{i-j}{n\choose i}{i\choose j}={n\choose j}[n-j=0]\quad ①i=j∑n​(−1)i−j(in​)(ji​)=(jn​)[n−j=0]①证明∑i=jn(−1)i−j(ni)(ij)=∑i=jn(−1)i−j(nj)(n−ji−j)=(nj)∑i=jn(−1)i−j(n−ji−j)=(nj)∑i=0n−j(−1)i(n−ji)=(nj)(
原创
发布博客 2021.03.08 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

快速莫比乌斯变换

莫比乌斯变换定义函数fff的莫比乌斯变换为f^\hat ff^​f^S=∑T⊆SfT\hat f_S=\sum_{T\subseteq S}f_Tf^​S​=T⊆S∑​fT​则有莫比乌斯反演fS=∑T⊆S(−1)∣S∣−∣T∣f^Tf_S=\sum_{T\subseteq S}(-1)^{|S|-|T|}\hat f_TfS​=T⊆S∑​(−1)∣S∣−∣T∣f^​T​快速莫比乌斯变换FMT考虑如何快速快速进行莫比乌斯变换和反演。设f^Si=∑T⊆S[(S−T)⊆{1,2,...,i
原创
发布博客 2021.03.06 ·
536 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏
加载更多