LeetCode - 150. 逆波兰表达式求值

给定一个逆波兰表达式字符串数组,需要计算其表示的算术表达式值。有效运算符包括加、减、乘、除,每个操作数可以是整数或表达式,除法结果总是向零截断,且输入保证不会出现除零情况。32位整数范围内计算。例如,输入'2 1 + 3 *'将得到结果9。
摘要由CSDN通过智能技术生成

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 '+''-''*' '/'
  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
  • 两个整数之间的除法总是 向零截断 。
  • 表达式中不含除零运算。
  • 输入是一个根据逆波兰表示法表示的算术表达式。
  • 答案及所有中间计算结果可以用 32 位 整数表示。

示例:

  • 输入tokens = ["2","1","+","3","*"]
  • 输出:9
  • 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

提示:

  • 1 <= tokens.length <= 1e + 4
  • tokens[i] 是一个算符(“+”、“-”、“*” 或 “/”),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 )
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * )

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
#include <string.h>
#define MaxSize 10000

typedef struct stack {
    int data[MaxSize];
    int top;
} stack;

void push(stack *pS, int x) {
    pS->data[++ pS->top] = x;
}

int pop(stack *pS) {
    int ret = pS->data[pS->top --];
    return ret;
}

int getTop(stack s) {
    int ret = s.data[s.top];
    return ret;
}

int evalRPN(char ** tokens, int tokensSize){
    stack s;
    s.top = -1;
    for( int i = 0; i < tokensSize; i ++ ) {
        int a, b;
        if( tokens[i][0] == '+' ) {
            b = pop(&s);
            a = pop(&s);
            push(&s, a + b);
        } else if( tokens[i][0] == '-'  && tokens[i][1] == '\0' ) {
            b = pop(&s);
            a = pop(&s);
            push(&s, a - b);
        } else if( tokens[i][0] == '*' ) {
            b = pop(&s);
            a = pop(&s);
            push(&s, a * b);
        } else if( tokens[i][0] == '/' ) {
            b = pop(&s);
            a = pop(&s);
            push(&s, a / b);
        } else {
            int value = 0;
            int length = strlen(tokens[i]);
            if( tokens[i][0] == '-' ) {
                for( int j = length - 1, k = 1; j > 0; j --, k *= 10 )
                    value += (tokens[i][j] - '0') * k;
                value *= -1;
            } else
                for( int j = length - 1, k = 1; j >= 0; j --, k *= 10 )
                    value += (tokens[i][j] - '0') * k;
            push(&s, value);
        }
    }
    return getTop(s);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值