模拟退火优化算法

介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如下图所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。这就是简单的爬山算法思想。
在这里插入图片描述
模拟退火(SA,Simulated Annealing)思想

爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以上图为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

模拟退火算法描述:

若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动

若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

P(dE) = exp( dE/(kT) )

其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

关于爬山算法与模拟退火,有一个有趣的比喻:

爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

简单地说:

  1. 初始化:初始温度T,初始解状态S,是算法迭代的起点;
  2. 产生新解S′
  3. 计算增量ΔT = C(S′,S),其中C为评价函数:
    若ΔT < 0,则接受 S′ 作为新的当前解,
    否则以概率 exp(-ΔT/kT) 接受 S′ 作为新的当前解
  4. 如果满足终止条件则输出当前解作为最优解,结束程序,终止条件通常取为连续若干个新解都没有被接受时终止算法。

上述关键点:以一定概率exp(-ΔT/kT) 接受一个不好的解,这是SA区别于爬山算法的地方。

SA 算法应用

应用 模拟退火SA 算法求解以下函数的最小值:

y = np.sin(5np.pi(x-0.05)) + np.cos(np.pi*(x-0.04)), 0<x<1

先plot 下函数:
在这里插入图片描述
这是有意选取的一个多峰值函数,观察SA算法是否陷入局部极小;爬山算法是怎么陷入局部极小的,SA又是怎么跳出局部极小的。

下面给出模拟退火的伪代码表示。

/*
* J(y):在状态y时的评价函数值
* Y(i):表示当前状态
* Y(i+1):表示新的状态
* r: 用于控制降温的快慢
* T: 系统的温度,系统初始应该要处于一个高温的状态
* T_min :温度的下限,若温度T达到T_min,则停止搜索
*/
while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ; 

  if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  else
  {
// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也
if ( exp( dE/T ) > random( 0 , 1 ) )
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  }
  T = r * T ; //降温退火 ,0<1 。r越大,降温越慢;r越小,降温越快
  /*
  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
  */
  i ++ ;
}

模拟退火算法的优点

每一种算法的存在,必定就有它的可取之处,模拟退火算法的收敛速度是比较慢一点的,但是精确程度却是可以通过不断的计算而得到提高,从而达到全局的最优解。模拟算法也是一种十分通用的随机搜索算法,在很多的方面都得到了运用,像是图像识别和神经网计算机方面等等。它也分为了三部分,解空间,目标函数和初始解,在计算时,它具有渐近收敛性,也具有并行性,尤其是解决TSP的问题上,是最有效的方式。因为模拟退火算法是一种优化算法,所以一般来说是不能够独立存在的,它需要一个合适的应用场合,才能够有比较好的建模效果。

模拟退火算法是一种模拟物理退火的过程而设计的随机优化算法。它的基本思想是通过在解空间中随机搜索,以一定的概率接受劣解,以避免陷入局部最优解,并最终趋向于全局最优解。 在Python中,可以使用以下代码实现模拟退火优化算法: ```python import random import math def simulated_annealing(temperature, cooling_rate, initial_solution): current_solution = initial_solution best_solution = initial_solution while temperature > 0.1: new_solution = generate_neighbor(current_solution) current_energy = calculate_energy(current_solution) new_energy = calculate_energy(new_solution) if new_energy < current_energy: current_solution = new_solution else: probability = math.exp((current_energy - new_energy) / temperature) if random.random() < probability: current_solution = new_solution if calculate_energy(current_solution) < calculate_energy(best_solution): best_solution = current_solution temperature *= cooling_rate return best_solution def generate_neighbor(solution): # 生成邻居解 # ... return neighbor_solution def calculate_energy(solution): # 计算解的能量 # ... return energy # 设置初始参数 initial_temperature = 100 cooling_rate = 0.95 initial_solution = ... # 调用模拟退火算法 best_solution = simulated_annealing(initial_temperature, cooling_rate, initial_solution) ``` 在上述代码中,`simulated_annealing`函数是模拟退火算法的主要实现部分。它使用随机生成的邻居解来更新当前解,并根据能量差和温度来决定是否接受劣解。同时,使用一个变量来保存全局最优解。 需要注意的是,具体的邻居解生成方式和能量计算方式需要根据具体问题进行设计。在代码中的`generate_neighbor`和`calculate_energy`函数中,你需要根据具体问题进行实现。 总结起来,模拟退火优化算法是一种随机搜索算法,通过在解空间中随机搜索,并以一定的概率接受劣解,从而避免陷入局部最优解。在Python中,你可以使用上述代码作为模板,根据具体问题进行适当的修改,实现模拟退火优化算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值