1、对这张n*n的图进行黑白染色,将黑色的点放在一个集合,白色的点放在一个集合。容易发现,能相互攻击到的点一定在不同一个集合。这显然满足二分图。
2、对能相互攻击到的点连边,最多能放置多少个等价最少要取走多少个,才能使这些边不存在,这是最小点覆盖问题,在二分图中最小点覆盖等于最大匹配。
所以答案就是总点数减去不能放置的点再减去最小点覆盖
3、这里如果用匈牙利算法直接做的话,匈牙利需要进行dfs N次,每次最多跑满一张图也就是所有的边,复杂度是O(NM) 其中N是点数,M是边数。
对于此题的数据范围,当输入的n=200,m=0时候,
就有4e4个点,有一半的点能连8条边,4e4 * 2e4 * 8=6.4e9 显然会TLE
所以这里我们用Dinic算法跑最大流即可。
最大流跑二分图的复杂度是O(M × sqrt(N))
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
const int N=210*210;
struct E{
int to,next,v;
}e[10*N];
int mp[210][210],in[210][210];
int dx[]={1,1,2,2,-1,-1,-2,-2},dy[]={2,-2,1,-1,2,-2,1,-1};
int h[N],tot;
int n,m,k;
int ans;
int deep[N],cur[N];
void add(int a,int b,int v){
e[tot]={b,h[a],v},h[a]=tot++;
e[tot]={a,h[b],0},h[b]=tot++;
}
int bfs(int s,int t){
memset(deep,0,sizeof deep);
queue<int> que;
deep[s]=1;
que.push(s);
while(!que.empty()){
int x=que.front();
que.pop();
for(int i=h[x];~i;i=e[i].next){
int to=e[i].to,v=e[i].v;
if(v && !deep[to]){
deep[to]=deep[x]+1;
que.push(to);
}
}
}
return deep[t];
}
int dfs(int s,int t,int flow){
if(s==t) return flow;
int sum=0;
for(int &i=cur[s];~i;i=e[i].next){
int to=e[i].to,v=e[i].v;
if(v && deep[to]==deep[s]+1){
int Next=dfs(to,t,min(flow,v));
e[i].v-=Next,e[i^1].v+=Next;
flow-=Next,sum+=Next;
}
}
if(!sum) deep[s]=-2;
return sum;
}
void Dinic(int s,int t){
int INF=1e9;
ans=0;
while(bfs(s,t)) {
for(int i=0;i<=n*n+1;i++) cur[i]=h[i];
ans+=dfs(s,t,INF);
}
}
int main(){
memset(h,-1,sizeof h);
tot=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
mp[x][y]=1;
}
int num=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) in[i][j]=++num;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mp[i][j]) continue;
if((i+j)&1){//左部的点
add(0,in[i][j],1);///源点连向左部的点
for(int k=0;k<8;k++){
int x=i+dx[k],y=j+dy[k];
if(x<1 || x>n || y<1 || y>n || mp[x][y]) continue;
add(in[i][j],in[x][y],1);///左部的点连到右部的点
}
}
else add(in[i][j],n*n+1,1);///右部的点连向汇点
}
}
Dinic(0,n*n+1);
printf("%d\n",n*n-m-ans);///答案就是所有的点减去不可放置的点在减去最大匹配
return 0;
}
骑士共存问题与图算法
探讨了骑士共存问题的解决策略,通过构建二分图并应用匈牙利算法和Dinic算法来求解最大匹配与最大流,解决了骑士在棋盘上互不攻击的最优布局问题。
1425

被折叠的 条评论
为什么被折叠?



