【论文】BERT_LF: A Similar Case Retrieval Method Based on Legal Facts

文章提出了一个结合法律事实和BERT的司法案例检索方法,以解决长文本处理和法律语境下相似度计算的挑战。通过法律事实编码、BERT的语义编码和段落融合,模型能更好地捕捉司法案例的相似性,提高了检索准确性。
摘要由CSDN通过智能技术生成

摘要

随着中国智能法制的法子干,最高人民法院义务地持续全面地实现了类案检索系统,越来越多的司法大数据被公布,案例检索的应用则更加广泛,进一步地,类案检索结果的准确性亟需提高。司法案例检索是一个特殊的检索任务,对一个给定的查询案例,类案件诉欧指的是对于相似案例的检索。与传统的文本检索不同,司法案例检索有着不同的特征点,更具挑战性,因为它的查询案例比普通的关键词查询和短文章查询更长、更复杂。此外,查询案例和候选案例之间的依赖关系的定义也与基于文本或者话题的普通依赖关系有所区别。为了解决这些问题,我们提出了一个基于法律事实的类案推荐方法,我们的模型联合了话题分布和法律实体事实来使文档表示向量更适用于法律场景。同时,基于BERT的段落聚合方法用来编码上下文语义信息以解决长文本的问题。实验结果表示我们的方法优于现有方法。

1.介绍

在许多司法体系中,为了确保司法公正性,类案检索有着重要意义。随着中国智慧法制的发展和数字司法文档数量的增加,司法案例的自动检索在信息检索的研究领域已经吸引了越来越多的注意力【1-3】。近年来,研究者已经在司法信息减速哦方面取得了许多典型的进展【4-8】。

司法案例检索的目的是定义与给定案例相似的案例。中国提供了一个可参考的指导性案例系列,供类似案件的审判参考。指导性案例由标题、关键词、判决要点、相关法律法规、基本案例事实、判决结果、判决原因以及包括生效裁判及裁判员姓名的附注构成。研究相似案例的问题关键在于研究文本相似度。然而,类案检索与传统的文本检索大为不同,由于案例文本的长度,相关性的定义和司法数据集的获取。基于shao等人【9】的研究,用现有文本相似度方法解决这个问题的过程中有几个挑战:

挑战1:司法案例通常是长文本,导致模型在建立文本向量表示时无

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值