二叉树——数据结构
树
树的定义
树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
- 有且仅有一个特定的称为根(root)的结点;
- 当n>1时,其余结点课分为m(m>0)个互不相交的有限集,其中每一个集合本身又是一棵树,并且称为根的子树。
结点
- 结点拥有的子树数称为结点的度(Degree)。
- 度为0的结点称为叶结点或者终端结点。
- 树的度是树内各结点的度的最大值。
- 结点的子树的根称为该结点的孩子(Child),相应的,该结点称为孩子的双亲(Parent)。
- 同一个双亲的孩子之间互称兄弟。
树的其他概念
- 结点的层次从根开始定义起,根为第一层,根的孩子为第二层。
- 树中结点的最大层次称为树的深度(Depth)或高度。
- 森林是m(m>=0)棵互不相交的树的集合。
树的表示
孩子兄弟表示法
任意一棵树,它的结点的第一个孩子如果存在就是唯一的,它的右兄弟如果存在也是唯一的。因此,我们设置两个指针,分别指向该结点的第一个孩子和此节点的右兄弟。
typedef int DataType;
typedef struct Node
{
struct Node* firstchild; //第一个孩子结点
struct Node* nextbrother; //下一个兄弟结点
DataType data; //结点的数据域
}
二叉树
二叉树的定义
二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根节点和两课互不相交的、分别称为根节点的左子树和右子树的二叉树组成。
二叉树的特点
- 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。
- 左子树和右子树是有顺序的,次序不能任意颠倒。
- 即使树中某结点只有一颗子树,也要区分它是左子树还是右子树。
二叉树的性质
- 在二叉树的第i层上至多有2^(i-1)个结点。(i>=1)
- 深度为k的二叉树至多有2^k -1个结点。(k>=1)
- 对任何一颗二叉树T,如果其终端结点数为n0,度为2的节点数为n2,则n0=n2+1。
- 具有n个结点的完全二叉树的深度为log2n +1.
二叉树的遍历
二叉树的遍历是指从根节点出发,按照某种次序依次访问儿二叉树中的所有结点,使得每个结点都被访问且仅被访问一次。
-
前序遍历
若二叉树为空,则空操作返回,否则先访问根结点,然后遍历左子树再遍历右子树。
-
中序遍历
若二叉树为空,则空操作返回,否则从根节点开始,中序遍历根节点的左子树,然后是访问根结点,最后中序遍历右子树。
-
后序遍历
若二叉树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点。
-
层序遍历
若二叉树为空,则空操作返回,否则从数的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序队结点逐个访问。
特殊的二叉树
-
斜树
所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。
-
满二叉树
在一颗二叉树中,如果所有的分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
-
完全二叉树
对一颗具有n个结点的二叉树按层序编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这颗二叉树称为完全二叉树。
二叉树的顺序存储
物理结构上用数组存储,一个结点的下标为i,则这个结点的左孩子下标:2×i+1,右孩子下标:2×i+2,父亲下标:(i-1)/2;
二叉树的链式存储
typedef char DataType;
typedef struct BinaryTreeNode
{
DataType data;
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
}BTNode;
// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(DataType* a, int n, int* pi)
{
//判断当前结点是否为空,若为空结点则返回NULL
if (a[*pi] == '#' || *pi >= n)
{
(*pi)++;
return NULL;
}
//当前结点非空,创建当前结点
BTNode* root = (BTNode*)malloc(sizeof(BTNode));
root->data = a[*pi];
//字符位置向后移动一个位置
(*pi)++;
//创建左子树
root->left = BinaryTreeCreate(a, n, pi);
//创建右子树
root->right = BinaryTreeCreate(a, n, pi);
return root;
}
// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
//如果树不为空
if (*root)
{
//销毁左子树
BinaryTreeDestory(&(*root)->left);
//销毁右子树
BinaryTreeDestory(&(*root)->right);
//释放结点
free(*root);
//置空
*root = NULL;
}
}
// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
//当树为空时,结点个数为0,否则为根结点个数 加上根的左子树中结点个数
//再加上根的右子树结点个数
int count = 0;
if (root)
{
count = 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
}
else
{
return 0;
}
return count;
}
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
//当树为空时,叶子结点个数为0
//当某个结点的左右子树均为空时,此结点是叶子结点,返回1
int count = 0;
if (!root)
{
return 0;
}
else if (root->left == NULL && root->right == NULL)
{
return 1;
}
else
{
count = BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}
return count;
}
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
//如果树为空或者K小于等于0,返回0
if (root == NULL || k <= 0)
{
return 0;
}
//树不为空且K等于1,返回1
if (root != NULL && k == 1)
{
return 1;
}
return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, DataType x)
{
//当前结点是否为空
if (!root)
{
return NULL;
}
if (root->data == x)
{
return root;
}
//当前结点不为空也不等于x,遍历左子树
BTNode* tmp = BinaryTreeFind(root->left, x);
if (!tmp)
{
return tmp;
}
else
{
//左子树返回空,遍历右子树
return tmp = BinaryTreeFind(root->right, x);
}
}
// 二叉树前序遍历
void BinaryTreePrevOrder(BTNode* root)
{
//如果树不为空
if (root)
{
//访问根结点
putchar(root->data);
//遍历左子树
BinaryTreePrevOrder(root->left);
//遍历右子树
BinaryTreePrevOrder(root->right);
}
}
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
//如果树不为空
if (root)
{
//中序遍历根节点的左子树
BinaryTreeInOrder(root->left);
//访问根结点
putchar(root->data);
//中序遍历右子树
BinaryTreeInOrder(root->right);
}
}
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
if (root)
{
//遍历左子树
BinaryTreePostOrder(root->left);
//遍历右子树
BinaryTreePostOrder(root->right);
//访问根结点
putchar(root->data);
}
}
堆
堆是一颗完全二叉树,堆中某个结点的值总是不大于或不小于其父节点的值。根结点最大的堆叫做大根堆,根结点最小的堆叫做小根堆。
堆的性质
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树;
堆的实现
从0开始对结点进行编号,寻找其中父子结点之间索引的对应关系。
首先,通过父结点的索引找出子结点的索引,设父结点的索引为i,则其左孩子结点的索引:2×i+1,右孩子结点的索引:2×i+2;
然后通过子结点的索引来找父结点的索引,设子结点的索引为i,则其父结点的索引为(i-1)/;
这样通过子结点与父结点之间的索引关系,便相当于建立了父结点和子结点之间的指针,实现了用数组来存储堆。
typedef int DataType;
typedef struct Heap
{
DataType* arr;
int size;
int capacity;
}Heap;
//向上调整算法
void AdjustUp(DataType* a, int n, int child)
{
int parent = (child-1)/2;
while (child > 0)
{
//如果孩子大于双亲,进行交换
if (a[child] > a[parent])
{
DataType tmp = a[parent];
a[parent] = a[child];
a[child] = tmp;
//调整,进行下一次交换
child = parent;
parent= (child - 1) / 2;
}
else
{
break;
}
}
}
//向下调整算法:左子树是小堆,右子树也是小堆
void AdjustDown(DataType* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1;
while (child < n)
{
//找出左右孩子中小的那一个
if (child + 1 < n && a[child + 1] < a[child])
{
child++;
}
//如果孩子比双亲还小,则将小的一个孩子结点与双亲结点进行交换
if (a[parent] > a[child])
{
DataType tmp = a[parent];
a[parent] = a[child];
a[child] = tmp;
//调整,进行下一次交换
parent = child;
child = parent * 2 + 1;
}
else//孩子比双亲大,则终止调整
{
break;
}
}
}
// 堆的构建
void HeapCreate(Heap* hp, DataType* a, int n)
{
hp->arr = (DataType*)malloc(sizeof(DataType)*n);
hp->size = n;
hp->capacity = n;
//建堆:调用向下调整算法,从最后一个结点的双亲开始
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(hp->arr, hp->size, i);
}
}
// 堆的销毁
void HeapDestory(Heap* hp)
{
free(hp->arr);
hp->arr = NULL;
hp->size = hp->capacity = 0;
}
// 堆的插入
void HeapPush(Heap* hp, DataType x)
{
//检查容量
if (hp->size == hp->capacity)
{
hp->capacity *= 2;
hp->arr = (DataType*)realloc(hp->arr, sizeof(DataType)*hp->capacity);
}
//尾插
hp->arr[hp->size] = x;
hp->size++;
//向上调整
AdjustUp(hp->arr, hp->size, hp->size-1);
}
// 堆的删除
void HeapPop(Heap* hp)
{
//交换
DataType tmp = hp->arr[0];
hp->arr[0] = hp->arr[hp->size - 1];
hp->arr[hp->size - 1] = tmp;
//向下调整
AdjustDown(hp->arr, hp->size, 0);
}
// 取堆顶的数据
DataType HeapTop(Heap* hp)
{
return hp->arr[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
return hp->size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{
if (hp->size == 0)
{
return 0;
}
else
{
return 1;
}
}
// 对数组进行堆排序
// 升序建小堆,降序建大堆
void HeapSort(int* a, int n)
{
//排序需要建大堆:
//因为每次都会把堆顶元素拿出来放到当前堆的最后一个位置
//相对于每次都会把剩余元素当中的最大值(即堆顶元素)找出来,放到当前堆的最后一个位置
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
while (n - 1 > 0)
{
DataType tmp = a[0];
a[0] = a[n - 1];
a[n - 1] = tmp;
//调堆,选次大的数
AdjustDown(a, n - 1, 0);
n--;
}
}
363

被折叠的 条评论
为什么被折叠?



