二叉树和堆——数据结构

二叉树——数据结构

树的定义

树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:

  1. 有且仅有一个特定的称为根(root)的结点;
  2. 当n>1时,其余结点课分为m(m>0)个互不相交的有限集,其中每一个集合本身又是一棵树,并且称为根的子树。

结点

  • 结点拥有的子树数称为结点的度(Degree)。
  • 度为0的结点称为叶结点或者终端结点。
  • 树的度是树内各结点的度的最大值。
  • 结点的子树的根称为该结点的孩子(Child),相应的,该结点称为孩子的双亲(Parent)。
  • 同一个双亲的孩子之间互称兄弟。

树的其他概念

  • 结点的层次从根开始定义起,根为第一层,根的孩子为第二层。
  • 树中结点的最大层次称为树的深度(Depth)或高度。
  • 森林是m(m>=0)棵互不相交的树的集合。

树的表示

孩子兄弟表示法

任意一棵树,它的结点的第一个孩子如果存在就是唯一的,它的右兄弟如果存在也是唯一的。因此,我们设置两个指针,分别指向该结点的第一个孩子和此节点的右兄弟。

typedef int DataType;
typedef struct Node
{
    struct Node* firstchild; //第一个孩子结点
    struct Node* nextbrother; //下一个兄弟结点
    DataType data; //结点的数据域
}

二叉树

二叉树的定义

二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根节点和两课互不相交的、分别称为根节点的左子树和右子树的二叉树组成。

二叉树的特点

  • 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。
  • 左子树和右子树是有顺序的,次序不能任意颠倒。
  • 即使树中某结点只有一颗子树,也要区分它是左子树还是右子树。

二叉树的性质

  1. 在二叉树的第i层上至多有2^(i-1)个结点。(i>=1)
  2. 深度为k的二叉树至多有2^k -1个结点。(k>=1)
  3. 对任何一颗二叉树T,如果其终端结点数为n0,度为2的节点数为n2,则n0=n2+1。
  4. 具有n个结点的完全二叉树的深度为log2n +1.

二叉树的遍历

二叉树的遍历是指从根节点出发,按照某种次序依次访问儿二叉树中的所有结点,使得每个结点都被访问且仅被访问一次。

  1. 前序遍历

    若二叉树为空,则空操作返回,否则先访问根结点,然后遍历左子树再遍历右子树。

  2. 中序遍历

    若二叉树为空,则空操作返回,否则从根节点开始,中序遍历根节点的左子树,然后是访问根结点,最后中序遍历右子树。

  3. 后序遍历

    若二叉树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点。

  4. 层序遍历

    若二叉树为空,则空操作返回,否则从数的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序队结点逐个访问。

特殊的二叉树

  1. 斜树

    所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。

  2. 满二叉树

    在一颗二叉树中,如果所有的分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。

  3. 完全二叉树

    对一颗具有n个结点的二叉树按层序编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这颗二叉树称为完全二叉树。

二叉树的顺序存储

物理结构上用数组存储,一个结点的下标为i,则这个结点的左孩子下标:2×i+1,右孩子下标:2×i+2,父亲下标:(i-1)/2;

二叉树的链式存储

typedef char DataType;
typedef struct BinaryTreeNode
{
    DataType data;
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
}BTNode;

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(DataType* a, int n, int* pi)
{
	//判断当前结点是否为空,若为空结点则返回NULL
	if (a[*pi] == '#' || *pi >= n)
	{
		(*pi)++;
		return NULL;
	}
	//当前结点非空,创建当前结点
	BTNode* root = (BTNode*)malloc(sizeof(BTNode));
	root->data = a[*pi];
	//字符位置向后移动一个位置
	(*pi)++;
	//创建左子树
	root->left = BinaryTreeCreate(a, n, pi);
	//创建右子树
	root->right = BinaryTreeCreate(a, n, pi);
	return root;
}
// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
	//如果树不为空
	if (*root)
	{
		//销毁左子树
		BinaryTreeDestory(&(*root)->left);
		//销毁右子树
		BinaryTreeDestory(&(*root)->right);
		//释放结点
		free(*root);
		//置空
		*root = NULL;
	}
}
// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
	//当树为空时,结点个数为0,否则为根结点个数 加上根的左子树中结点个数
	//再加上根的右子树结点个数
	int count = 0;
	if (root)
	{
		count = 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
	}
	else
	{
		return 0;
	}
	return count;
}
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
	//当树为空时,叶子结点个数为0
	//当某个结点的左右子树均为空时,此结点是叶子结点,返回1
	int count = 0;
	if (!root)
	{
		return 0;
	}
	else if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}
	else
	{
		count = BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
	}
	return count;
}
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
	//如果树为空或者K小于等于0,返回0
	if (root == NULL || k <= 0)
	{
		return 0;
	}
	//树不为空且K等于1,返回1
	if (root != NULL && k == 1)
	{
		return 1;
	}
	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, DataType x)
{
	//当前结点是否为空
	if (!root)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}
	//当前结点不为空也不等于x,遍历左子树
	BTNode* tmp = BinaryTreeFind(root->left, x);
	if (!tmp)
	{
		return tmp;
	}
	else
	{
		//左子树返回空,遍历右子树
		return tmp = BinaryTreeFind(root->right, x);
	}
}
// 二叉树前序遍历
void BinaryTreePrevOrder(BTNode* root)
{
	//如果树不为空
	if (root)
	{
		//访问根结点
		putchar(root->data);
		//遍历左子树
		BinaryTreePrevOrder(root->left);
		//遍历右子树
		BinaryTreePrevOrder(root->right);
	}
}
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
	//如果树不为空
	if (root)
	{
		//中序遍历根节点的左子树
		BinaryTreeInOrder(root->left);
		//访问根结点
		putchar(root->data);
		//中序遍历右子树
		BinaryTreeInOrder(root->right);
	}
}
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
	if (root)
	{
		//遍历左子树
		BinaryTreePostOrder(root->left);
		//遍历右子树
		BinaryTreePostOrder(root->right);
		//访问根结点
		putchar(root->data);
	}
}

堆是一颗完全二叉树,堆中某个结点的值总是不大于或不小于其父节点的值。根结点最大的堆叫做大根堆,根结点最小的堆叫做小根堆。

堆的性质

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树;

堆的实现

从0开始对结点进行编号,寻找其中父子结点之间索引的对应关系。

首先,通过父结点的索引找出子结点的索引,设父结点的索引为i,则其左孩子结点的索引:2×i+1,右孩子结点的索引:2×i+2;

然后通过子结点的索引来找父结点的索引,设子结点的索引为i,则其父结点的索引为(i-1)/;

这样通过子结点与父结点之间的索引关系,便相当于建立了父结点和子结点之间的指针,实现了用数组来存储堆。

typedef int DataType;
typedef struct Heap
{
	DataType* arr;
	int size;
	int capacity;
}Heap;

//向上调整算法
void AdjustUp(DataType* a, int n, int child)
{
	int parent = (child-1)/2;
	while (child > 0)
	{
		//如果孩子大于双亲,进行交换
		if (a[child] > a[parent])
		{
			DataType tmp = a[parent];
			a[parent] = a[child];
			a[child] = tmp;
			//调整,进行下一次交换
			child = parent;
			parent= (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//向下调整算法:左子树是小堆,右子树也是小堆
void AdjustDown(DataType* a, int n, int root)
{
	int parent = root;
	int child = parent * 2 + 1;
	while (child < n)
	{
		//找出左右孩子中小的那一个
		if (child + 1 < n && a[child + 1] < a[child])
		{
			child++;
		}
		//如果孩子比双亲还小,则将小的一个孩子结点与双亲结点进行交换
		if (a[parent] > a[child])
		{
			DataType tmp = a[parent];
			a[parent] = a[child];
			a[child] = tmp;
			//调整,进行下一次交换
			parent = child;
			child = parent * 2 + 1;
		}
		else//孩子比双亲大,则终止调整
		{
			break;
		}
	}
}
// 堆的构建
void HeapCreate(Heap* hp, DataType* a, int n)
{
	hp->arr = (DataType*)malloc(sizeof(DataType)*n);
	hp->size = n;
	hp->capacity = n;

	//建堆:调用向下调整算法,从最后一个结点的双亲开始
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(hp->arr, hp->size, i);
	}
}
// 堆的销毁
void HeapDestory(Heap* hp)
{
	free(hp->arr);
	hp->arr = NULL;
	hp->size = hp->capacity = 0;
}
// 堆的插入
void HeapPush(Heap* hp, DataType x)
{
	//检查容量
	if (hp->size == hp->capacity)
	{
		hp->capacity *= 2;
		hp->arr = (DataType*)realloc(hp->arr, sizeof(DataType)*hp->capacity);
	}
	//尾插
	hp->arr[hp->size] = x;
	hp->size++;
	//向上调整
	AdjustUp(hp->arr, hp->size, hp->size-1);
}
// 堆的删除
void HeapPop(Heap* hp)
{
	//交换
	DataType tmp = hp->arr[0];
	hp->arr[0] = hp->arr[hp->size - 1];
	hp->arr[hp->size - 1] = tmp;
	//向下调整
	AdjustDown(hp->arr, hp->size, 0);
}
// 取堆顶的数据
DataType HeapTop(Heap* hp)
{
	return hp->arr[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
	return hp->size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{
	if (hp->size == 0)
	{
		return 0;
	}
	else
	{
		return 1;
	}
}
// 对数组进行堆排序
// 升序建小堆,降序建大堆
void HeapSort(int* a, int n)
{
	//排序需要建大堆:
	//因为每次都会把堆顶元素拿出来放到当前堆的最后一个位置
	//相对于每次都会把剩余元素当中的最大值(即堆顶元素)找出来,放到当前堆的最后一个位置
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	while (n - 1 > 0)
	{
		DataType tmp = a[0];
		a[0] = a[n - 1];
		a[n - 1] = tmp;
		//调堆,选次大的数
		AdjustDown(a, n - 1, 0);
		n--;
	}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值