uestc_莫寻
码龄6年
关注
提问 私信
  • 博客:6,691
    6,691
    总访问量
  • 3
    原创
  • 133,597
    排名
  • 36
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2018-11-02
博客简介:

qq_43587443的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    79
    当月
    1
个人成就
  • 获得61次点赞
  • 内容获得0次评论
  • 获得78次收藏
创作历程
  • 2篇
    2024年
  • 1篇
    2022年
成就勋章
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用colab快速下载huggingface的大模型文件

第三步,指定需要下载的文件list,执行下载操作,在这里我只下载了几个比较大的参数文件,默认下载路径为/content/download/repo_id,如/content/download/hfl---llama-3-chinese-8b-instruct-v3,在colab的文件夹列表中可以找到。近期在学习大模型的微调与部署应用,需要再huggingface下载预训练好的模型参数文件,这时候问题来了!第二步,导入包,定义函数,并从huggingface获取文件列表,代码参考了。首先我们打开colab,
原创
发布博客 2024.09.06 ·
989 阅读 ·
28 点赞 ·
0 评论 ·
17 收藏

yolov10如何去掉非极大值抑制(NMS)的?

第三步,设置一个iou阈值,然后计算候选框与其他框的iou,得到其他框相对于候选框的iou值,若某个框iou值大于设定的阈值,则大概率这个框跟候选框描述的是同一个物体,我们移除所有大于阈值的框,图中需要移除的是蓝色。以上就是nms的过程,去除低置信度的框--去除重叠框,这个算法最大的问题就是去除重叠框时,容易对真实重叠的物体造成误判。第四步,对于多个目标的结果,第三步去除重叠框之后,还剩下其他目标框,我们继续重复选择候选框,去除重叠框的步骤,直到处理完所有候选框(没有其他目标框了),算法结束。
原创
发布博客 2024.06.07 ·
1244 阅读 ·
9 点赞 ·
0 评论 ·
17 收藏

论文阅读(1):病理图像分类TransMIL: Transformer based Correlated Multiple Instance Learning

关于病理图像的论文阅读
原创
发布博客 2022.09.05 ·
4449 阅读 ·
24 点赞 ·
0 评论 ·
43 收藏