- 博客(7)
- 收藏
- 关注
原创 AI 推理框架速读(3)—— RKNN
📌 RKNN 推理框架:边缘 AI 的高效部署利器 瑞芯微推出的 RKNN 专为旗下 NPU 芯片(如 RK3588/RK356x)优化,支持主流模型(ONNX/TFLite等)转换为专用.rknn格式
2025-06-10 10:23:35
668
原创 AI 推理框架速读(2)—— TensorRT
优势描述极速推理提升 2-10 倍推理速度显存占用更少支持 FP16 / INT8 精度支持主流模型可与 ONNX 接口结合高度灵活支持动态输入、动态 shape、batch size 等跨平台部署支持 x86、ARM 架构,适合边缘计算和服务器。
2025-06-03 11:27:18
526
原创 Grounding DINO的colab报错问题解决方法
在Colab上运行GroundingDINO的demo时,遇到了两个主要问题:NameError: name '_C' is not defined和error: subprocess-exited-with-error。这些问题源于Colab上使用的torch2.6.0+cuda12.5或更高版本不再兼容旧的.type()方法,导致GroundingDINO库构建失败。解决方法是修改GroundingDINO/groundingdino/models/GroundingDINO/csrc/MsDeform
2025-05-19 17:12:49
238
原创 使用colab快速下载huggingface的大模型文件
第三步,指定需要下载的文件list,执行下载操作,在这里我只下载了几个比较大的参数文件,默认下载路径为/content/download/repo_id,如/content/download/hfl---llama-3-chinese-8b-instruct-v3,在colab的文件夹列表中可以找到。近期在学习大模型的微调与部署应用,需要再huggingface下载预训练好的模型参数文件,这时候问题来了!第二步,导入包,定义函数,并从huggingface获取文件列表,代码参考了。首先我们打开colab,
2024-09-06 11:29:03
1912
原创 yolov10如何去掉非极大值抑制(NMS)的?
第三步,设置一个iou阈值,然后计算候选框与其他框的iou,得到其他框相对于候选框的iou值,若某个框iou值大于设定的阈值,则大概率这个框跟候选框描述的是同一个物体,我们移除所有大于阈值的框,图中需要移除的是蓝色。以上就是nms的过程,去除低置信度的框--去除重叠框,这个算法最大的问题就是去除重叠框时,容易对真实重叠的物体造成误判。第四步,对于多个目标的结果,第三步去除重叠框之后,还剩下其他目标框,我们继续重复选择候选框,去除重叠框的步骤,直到处理完所有候选框(没有其他目标框了),算法结束。
2024-06-07 20:42:48
2044
2
原创 论文阅读(1):病理图像分类TransMIL: Transformer based Correlated Multiple Instance Learning
关于病理图像的论文阅读
2022-09-05 20:34:14
5151
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人