交叉熵损失函数求导与Softmax函数求导

前情提要

  在做单分类的时候,一般模型的最后一层是线性层Linear做分类器,输出在每个标签上的logits。损失函数为交叉熵损失函数,会对logits进行Softmax之后累计损失。

  为了理论基础和严谨,复习下求导运算。

交叉熵损失函数

  交叉熵函数在pytorch上的详细原理与实验验证请见博客:【pytorch】交叉熵损失函数 F.cross_entropy()

  交叉熵损失函数公式如公式(1)所示:

L = − ∑ i N l a b e l i × ln ⁡ a i \begin{align}L = -\sum_{i}^N label_i \times \ln a_i\end{align} L=iNlabeli×lnai

  其中, l a b e l i label_i labeli是真实标签,也就是标签的one-hot编码,是一维常量。 a i a_i ai是经过了Softmax的概率logits,是一维向量。累计计算 N N N个样本的值,即可得到最终结果。

   a i a_i ai计算公式如公式(2)公式(3):

a i = S o f t m a x ( z i ) = e z i ∑ k M e z k \begin{align} a_i &= Softmax(z_i) \\ &= \frac {e^{z_i}} {\sum_{k}^M e^{z_k}} \end{align} ai=Softmax(zi)=kMezkezi

  其中, z i z_i zi是全连接层的输出logits中的第 i i i个,是一维向量。

对Softmax函数求导

  因为交叉熵损失函数中包含了Softmax函数,所以先求导Softmax

  对于公式(3),输入 z i z_i zi是全连接层的输出logits中的第 i i i个,所以我们对 z i z_i zi求导。但是因为Softmax公式的的分母包含了所有元素,所以为了方便计算,我们搞一个新变量,对 z j z_j zj求导。

  观察公式(3)的形状可知,Softmax函数是形如 g ( x ) h ( x ) \frac{g(x)}{h(x)} h(x)g(x)的函数,它的求导公式如公式(4)所示:

∂ a i ∂ z j = g ′ ( x ) h ( x ) − h ′ ( x ) g ( x ) h 2 ( x ) \begin{align} \frac{\partial a_i}{\partial z_j} = \frac{g'(x)h(x) - h'(x)g(x)}{h^2(x)} \end{align} zjai=h2(x)g(x)h(x)h(x)g(x)

  所以要得到Softmax的导数只需要知道 e z i e^{z_i} ezi ∑ e z k \sum e^{z_k} ezk的导数即可。

  ·当 i = j i=j i=j时, e z i e^{z_i} ezi z j z_j zj求偏导结果为 e z i e^{z_i} ezi或者 e z j e^{z_j} ezj都可以,因为 i = j i=j i=j
  ·当 i ≠ j i \not= j i=j时, e z i e^{z_i} ezi z j z_j zj求偏导结果为0,因为此刻 z i z_i zi z j z_j zj是两个不同的变量,所以求导为0;
  · ∑ e z k \sum e^{z_k} ezk z j z_j zj求偏导结果为 e z k e^{z_k} ezk,因为求和项里面总有一个 e z k e^{z_k} ezk

  于是当 i = j i=j i=j时,Softmax公式求导过程如公式(5):

∂ a i ∂ z j = ∂ e z i ∑ e z k ∂ z j = e z i ⋅ ∑ e z k − e z i ⋅ e z j ( ∑ e z k ) 2 = e z i ∑ e z k − e z i ∑ e z k ⋅ e z j ∑ e z k = a i ( 1 − a j ) (5) \begin{split} \frac{\partial a_i}{\partial z_j} &= \frac{\partial \frac{e^{z_i}}{\sum e^{z_k}}}{\partial z_j} \\ &= \frac{e^{z_i} \cdot \sum e^{z_k} - e^{z_i} \cdot e^{z_j} }{(\sum e^{z_k})^2} \\ &= \frac{e^{z_i}}{\sum e^{z_k}} - \frac{e^{z_i}}{\sum e^{z_k}} \cdot \frac{e^{z_j}}{\sum e^{z_k}} \\ &=a_i(1 - a_j) \end{split} \tag{5} zjai=zjezkezi=(ezk)2eziezkeziezj=ezkeziezkeziezkezj=ai(1aj)(5)

  当 i ≠ j i \not= j i=j时,Softmax公式求导过程如公式(6):

∂ a i ∂ z j = ∂ e z i ∑ e z k ∂ z j = 0 ⋅ ∑ e z k − e z i ⋅ e z j ( ∑ e z k ) 2 = − e z i ∑ e z k ⋅ e z j ∑ e z k = − a i a j (6) \begin{split} \frac{\partial a_i}{\partial z_j} &= \frac{\partial \frac{e^{z_i}}{\sum e^{z_k}}}{\partial z_j} \\ &= \frac{0\cdot \sum e^{z_k} - e^{z_i} \cdot e^{z_j} }{(\sum e^{z_k})^2} \\ &= - \frac{e^{z_i}}{\sum e^{z_k}} \cdot \frac{e^{z_j}}{\sum e^{z_k}} \\ &= -a_ia_j \end{split} \tag{6} zjai=zjezkezi=(ezk)20ezkeziezj=ezkeziezkezj=aiaj(6)

对交叉熵损失函数求导

  对交叉熵损失函数求导可以一直顺利的求到分类讨论前,如公式(7)所示。其中 l a b e l i label_i labeli是常数,所以提出来了。

∂ L ∂ z j = ∂ L ∂ a i ∂ a i ∂ z j = − l a b e l i ∂ ( ∑ ln ⁡ a i ) ∂ a i ∂ a i ∂ z j = − l a b e l i ( ∑ 1 a i ) ∂ a i ∂ z j (7) \begin{split} \frac{\partial L}{\partial z_j} &= \frac{\partial L}{\partial a_i}\frac{\partial a_i}{\partial z_j} \\ &= -label_i \frac{\partial (\sum \ln a_i)}{\partial a_i} \frac{\partial a_i}{\partial z_j} \\ &= -label_i (\sum\frac{1}{a_i}) \frac{\partial a_i}{\partial z_j} \\ \end{split} \tag{7} zjL=aiLzjai=labeliai(lnai)zjai=labeli(ai1)zjai(7)

  接下来分类讨论:

    ·当 i = j i=j i=j时:

= − l a b e l i 1 a i a i ( 1 − a j ) = − l a b e l i ( 1 − a j ) (8) =-label_i \frac{1}{a_i}a_i(1 - a_j)=-label_i (1 - a_j)\tag{8} =labeliai1ai(1aj)=labeli(1aj)(8)

    ·当 i ≠ j i \not= j i=j时:

= − l a b e l i ∑ i ≠ j 1 a i ( − a i a j ) = l a b e l i ∑ i ≠ j a j (9) =-label_i \sum_{i \not= j} \frac{1}{a_i} (-a_ia_j) = label_i \sum_{i \not= j} a_j\tag{9} =labelii=jai1(aiaj)=labelii=jaj(9)

  然后就会发现式(8)和式(9)相加就会把式(9)少的那个 a j a_j aj拼回去,于是式(7)最终求导为:

∂ L ∂ z j = ∂ L ∂ a i ∂ a i ∂ z j = − l a b e l i ∂ ( ∑ ln ⁡ a i ) ∂ a i ∂ a i ∂ z j = − l a b e l i ( ∑ 1 a i ) ∂ a i ∂ z j = − l a b e l i [ 1 − a j − ∑ i ≠ j a j ] = l a b e l i [ ∑ a j − 1 ] = l a b e l i ∑ a j − l a b e l i (10) \begin{split} \frac{\partial L}{\partial z_j} &= \frac{\partial L}{\partial a_i}\frac{\partial a_i}{\partial z_j} \\ &= -label_i \frac{\partial (\sum \ln a_i)}{\partial a_i} \frac{\partial a_i}{\partial z_j} \\ &= -label_i (\sum\frac{1}{a_i}) \frac{\partial a_i}{\partial z_j} \\ &= -label_i [1 - a_j- \sum_{i \not= j} a_j] \\ &= label_i [\sum a_j - 1] \\ &= label_i \sum a_j - label_i \\ \end{split} \tag{10} zjL=aiLzjai=labeliai(lnai)zjai=labeli(ai1)zjai=labeli[1aji=jaj]=labeli[aj1]=labeliajlabeli(10)

  • 54
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 35
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
在深度学习中,交叉熵损失函数常用于多分类问题中衡量模型输出与真实标签之间的差异。对于使用softmax作为激活函数的输出层,我们可以使用交叉熵损失函数进行优化。 设模型的输出为$y=(y_1,y_2,\dots,y_n)$,其中$y_i$表示模型对第$i$类的预测概率。设真实标签为$z=(z_1,z_2,\dots,z_n)$,其中$z_i$表示第$i$类的真实标签(通常取值为0或1)。 交叉熵损失函数定义如下: $$L(y,z)=-\sum_{i=1}^n z_i \log(y_i)$$ 接下来,我们来求解交叉熵对每个预测值的导数。 计算$L$对$y_k$的偏导数: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} \sum_{i=1}^n z_i \log(y_i)$$ 由于交叉熵对于除$y_k$以外的其他预测值$y_i$的偏导数为0(可以通过计算验证),因此只需计算$L$对$y_k$的偏导数。 我们可以使用链式法则来进行求导: $$\frac{\partial L}{\partial y_k} = -\sum_{i=1}^n \frac{\partial}{\partial y_k} (z_i \log(y_i))$$ 当$i\neq k$时,$\frac{\partial}{\partial y_k}(z_i \log(y_i))=0$,因此上式可以简化为: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} (z_k \log(y_k)) = -\frac{z_k}{y_k}$$ 综上所述,我们得到交叉熵损失函数对于softmax模型输出的偏导数为: $$\frac{\partial L}{\partial y_k} = \begin{cases} y_k-z_k, & \text{if $k=j$}\\ y_k, & \text{if $k\neq j$} \end{cases}$$ 其中$j$表示真实标签为1的类别。这样,我们就可以利用该导数来进行反向传播,更新模型参数,从而优化模型。
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

征途黯然.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值