2的次幂问题---算法集

问题描述
任何一个正整数都可以用 2 进制表示,例如:137 的 2 进制表示为 10001001。
将这种 2 进制表示写成 2 的次幂的和的形式,令次幂高的排在前面,可得到表达式137=2^7+2 ^3 +2^0
现在约定幂次用括号来表示,即 a^b 表示为 a(b)。此时,137 可表示为:2(7)+2(3)+2(0)
进一步:7=2^2 +2+2^0 (2^1 用 2 表示)3=2+2^0
所以最后 137 可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10 + 2^8+ 2^5+2+1
所以 1315 最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的 n 的 0,2 表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用递归实现会比较简单,可以一边递归一边输出

#include <iostream>
#include<cmath>
using namespace std;

void fun(int x)
{
	int y,z;
	y=(int)(log(x)/log(2)+0.1);
	z=x-pow(2,y);
	if(y==0)
	{
		cout<<"2(0)";
		return ;
	}
	else if(y==1)
	    cout<<"2";
	else
	{
		cout<<"2(";
		fun(y);
		cout<<")";
	}
	if(z)
	{
		cout<<"+";
		fun(z);
	}
}
int main ()
{
	int n;
	cin>>n;
	fun(n);
	return 0;
}

对递归算法要有比较高的认识,解决问题才会手到擒来。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值