问题描述
任何一个正整数都可以用 2 进制表示,例如:137 的 2 进制表示为 10001001。
将这种 2 进制表示写成 2 的次幂的和的形式,令次幂高的排在前面,可得到表达式137=2^7+2 ^3 +2^0
现在约定幂次用括号来表示,即 a^b 表示为 a(b)。此时,137 可表示为:2(7)+2(3)+2(0)
进一步:7=2^2 +2+2^0 (2^1 用 2 表示)3=2+2^0
所以最后 137 可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10 + 2^8+ 2^5+2+1
所以 1315 最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的 n 的 0,2 表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用递归实现会比较简单,可以一边递归一边输出
#include <iostream>
#include<cmath>
using namespace std;
void fun(int x)
{
int y,z;
y=(int)(log(x)/log(2)+0.1);
z=x-pow(2,y);
if(y==0)
{
cout<<"2(0)";
return ;
}
else if(y==1)
cout<<"2";
else
{
cout<<"2(";
fun(y);
cout<<")";
}
if(z)
{
cout<<"+";
fun(z);
}
}
int main ()
{
int n;
cin>>n;
fun(n);
return 0;
}
对递归算法要有比较高的认识,解决问题才会手到擒来。
2370

被折叠的 条评论
为什么被折叠?



