新手初入Java(四)数组

本文详细介绍了数组的概念、声明、实例化、初始化及基本访问操作。数组是一种包含相同类型数据的数据结构,支持一维或多维索引访问。文章通过实例展示了如何使用new运算符创建数组,并初始化数组元素,默认值和通过{}

数组(array)是一种数据结构,包含相同类型的一组数据。数组本身是数组引用类型对象,数组元素可以是任何数据类型(简单类型或引用类型),包括数组类型。数组有一个" 秩(rank)"和长度,秩确定和每个数组元素关联的索引个数。

1.数组的声明

  • 类型[] 数组变量名;
  • 类型 类型变量名[];

例如:

int[] array1;
int array2[];

2.数组的实例化和初始化

数组在声明后必须实例化才能使用。数组实例在运行时使用new运算符动态创建(即实例化)。new运算符指导数组实例的长度。new运算符自动将数组的元素初始化为相应的默认值:简单数值类型数组元素的默认值设置为零;char类型数组元素被初始化为0(\u0000);boolean类型数组元素被初始化为false;而引用类型数组元素的默认值为null。使用new运算符创建数组是,还可以通过{}初始化数组的元素,其基本格式如下:

  • 数组变量名=new 数组类型[数组元素的个数];
  • 类型[] 数组变量名=new 数组类型[数组元素的个数];
  • 数组变量名=new 数组类型[]{元素0,元素1,元素2,……,元素n-1};
  • 类型[] 数组变量名=new 数组类型[]{元素0,元素1,元素2,……元素n-1};
  • 类型[] 数组变量名 ={元素0,元素1,元素2,……,元素n-1};
int[] arr1,arr2;
arr1=new int[10];
int[] arr3=new int[10];
arr2=new int[]{1,2,3,4,5};

3.数组的基本访问操作

数组通过数组下标(或称索引)来访问数组中的数据元素。
实例如下:

int[] arr1=new int[10];
arr1[1]=123;
System.out.println(arr1[0]);

代码示例如下:

public class DemoTest{
 public static void main(String[] args) {
        int[] arr1={1,2,3,4,5};    //声明一个整型数组
	//使用for循环访问数组arr1的各个元素
        for (int i = 0; i <arr1.length ; i++) {
            System.out.println(arr1[i]);
        }
    }
}

4.一维数组

一维数组的额声明和初始化和之前介绍的大致相同。所以在这里对声明和初始化不多做介绍。在这里对一维数组的基本访问操作进行讲述。一维数组的基本访问操作的基本形式为:

数组变量名[下标]=<表达式>;
变量名=数组变量名[下标];

可使用数组的length属性获取数组的长度,其基本形式为:

数组变量名.length

代码示例如下:

public class TestDemo1{
 public static void main(String[] args) {
        int[] mark=new int[50];
        Random rNum=new Random();
        int i,sumMark=0,avgMark,overAvg=0;
        for(i=0;i<50;i++){
            mark[i]=rNum.nextInt(101);
            sumMark+=mark[i];
        }
        avgMark=sumMark/50;
        for ( i = 0; i <50 ; i++) {
            if(mark[i]>avgMark)
                overAvg++;
        }
        System.out.print("50个学生的平均成绩="+avgMark+" "+"高于平均成绩的学生人数="+overAvg);
    }
}
内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深理解算法实现细节,重点关注目标函构建、约束条件处理及优化求解过程,可尝试调整参设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值