Python数据挖掘入门与实践

本教程介绍了如何使用scikit-learn的`datasets`模块加载鸢尾花(Iris)数据集,并从中提取前5条特征数据、对应的类别标签以及数据的数组大小。鸢尾花数据集是一个经典的分类问题数据集,包含150个样本,每个样本有4个特征和1个类别标签。

任务描述

使用 scikit-learn 的datasets模块导入 iris 数据集,并打印数据。

相关知识

scikit-learn 包括一些标准数据集,不需要从外部下载,可直接导入使用,比如与分类问题相关的Iris数据集和digits手写图像数据集,与回归问题相关的波士顿房价数据集

以下列举一些简单的数据集,括号内表示对应的问题是分类还是回归:

 
  1. #加载并返回波士顿房价数据集(回归)
  2. load_boston([return_X_y])
  3. #加载并返回iris数据集(分类)
  4. load_iris([return_X_y])
  5. #加载并返回糖尿病数据集(回归)
  6. load_diabetes([return_X_y])
  7. #加载并返回数字数据集(分类)
  8. load_digits([n_class, return_X_y])
  9. #加载并返回linnerud数据集(多分类)
  10. load_linnerud([return_X_y])

这些标准数据集采用类字典的对象格式存储,比如.data表示原始数据,是一个(n_samples,n_features)二维数组,通过.shape可以得到二维数组大小,.target表示存储数据类别即标签。
下面我们将利用datasets加载数据集digits作为示例,如下图所示:

在命令行输入python进入 Python 终端,>>>表示 Python 终端提示符,输入 Python 命令即可执行。y[:5]表示标签的前 5 个数据。

编程要求

本关任务是,使用 scikit-learn 的datasets模块导入iris数据集,提取前 5 条原数据、前 5 条数据标签及原数据的数组大小。 请按照编程要求,补全右侧编辑器Begin-End区间的代码。

 
  1. from sklearn import datasets
  2. def getIrisData():
  3. '''
  4. 导入Iris数据集
  5. 返回值:
  6. X - 前5条训练特征数据
  7. y - 前5条训练数据类别
  8. X_shape - 训练特征数据的二维数组大小
  9. '''
  10. #初始化
  11. X = []
  12. y = []
  13. X_shape = ()
  14. #   请在此添加实现代码   #
  15. #********** Begin *********#
  16.  
  17. #********** End **********#
  18. return X,y,X_shape

测试说明

本关的测试文件是step1/testImportData.py,该代码负责对你的实现代码进行测试,注意step1/testImportData.py 不能被修改,该测试代码具体如下:

 
  1. import importData
  2. X,y,X_shape = importData.getIrisData()
  3. print(X)
  4. print(y)
  5. print(X_shape)
#导入sklearn模块中的datasets函数
from sklearn import datasets 
#自建函数 
def getIrisData():

    '''
    导入Iris数据集

    返回值:
    X - 前5条训练特征数据
    y - 前5条训练数据类别
    X_shape - 训练特征数据的二维数组大小
    '''
    #初始化
	X = [] 
	y = [] 
	X_shape = () 

	#   请在此添加实现代码   #
	#********** Begin *********#
    #导入iris数据集
    iris = datasets.load_iris()
    #提取前 5 条原数据
    X = iris.data[:5]
    #提取前 5 条数据标签及原数据
	y = iris.target[:5]
	X_shape = iris.data.shape

	#********** End **********#

	return X,y,X_shape

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值