卷积神经网络原理图文详解

前言

这个什么鬼卷积神经网络,就是用于有趣的计算机视觉的一个人工智能分支。包括人脸识别、自动驾驶等众多技术都基于此。听上去好像的挺好玩的。

在这里插入图片描述
那这个卷积神经网络呢就像是一个函数,输入一个二维的像素矩阵,经过这个辣鸡函数后就可以得到其特征值
在这里插入图片描述

卷积(convolution)

在这里插入图片描述
在这里插入图片描述
图中左上角的小九宫格为卷积核(卷积核是原图中的某一部分的特征矩阵,不一定是3X3的),将图像的每个位置与卷积核进行如图所示的运算,得到右上角的这个特征矩阵
在这里插入图片描述
然后再将特征矩阵的所有值相加除以数据的个数,就可以得到该区域与卷积核的匹配度(等于1的话就一毛一样的)
在这里插入图片描述
按照同样的方法我们可以看到这个不好玩的卷积核跟中间那一块的匹配度是0.55
在这里插入图片描述
然后把整个图的匹配度都算出来,得到的矩阵就是关于这个卷积核的特征矩阵
在这里插入图片描述
这就是经过一次卷积得到的结果
在这里插入图片描述
我们再用多个卷积核对原图进行卷积就可以得到多个特征矩阵,上面这个过程也就是我们说的卷积了

池化(pooling)

我们再进行这个好玩的训练过程中往往图片都是成千上万张的,在加上对没张图片的卷积运算。。。。哇,这不是要算死吗,心疼我的电脑啊(那就最小化后台运行假装让你休息吧)。所以,我们就需要对经过卷积的特征矩阵进行简化,简化过程当然就是池化了
在这里插入图片描述

在这里插入图片描述
池化主要是有两种滴,第一种就是像上图这样,把一个区域里最大的那个数据提取出来,还有一种就是取这个区域内所有数的平均数
在这里插入图片描述
我们这里假装步长是2(就是这个2X2的框框每次移动都是两格),如果到某个区域数据没有的就补0就阔以了
在这里插入图片描述
继续这样的一波操作就会的到整个特征矩阵的池化结果
在这里插入图片描述
然后也是一样的方法就可以把多个特征矩阵池化了哈

正则化(normalization)/ReLU

正则化这个就比较好玩了
在这里插入图片描述
就是直接这样,把负数变成0,正数不改变就好了
在这里插入图片描述
Okay,就这样就好了哈哈哈

全连接(fully connect)

全连接啊就是把全部数据排成一列
在这里插入图片描述
像这样一行行一列列按顺序排成一列
在这里插入图片描述
在这里插入图片描述
对于每个字母(看你想要训练的图像是什么,这里就以字母图像为例了),它所对应的全连接层中每个数据都有其对应的权重(就是这个字母在这个位置的特征值为这个数的概率),看图中的例子就是字母X的全连接层第一个特征值为1.0的概率是0.9,然后把这两个数相乘,对于每个特征值都是这样相乘,然后求和去平均值就是最终得到的概率(这个概率指的就是这一串特征值代表的字母是X的概率)。求出每个字母的概率,最大概率的字母就是我们通过机器学习认为这张图所表示的字母。

全连接的另一种解释方式

在这里插入图片描述
当输入字母X的图片时,得到上图的全连接层,把值为1.0的数据用黑色粗线连接
在这里插入图片描述
当输入字母O的图片时,得到上图的全连接层,把值为1.0的数据用绿色粗线连接
在这里插入图片描述
我们输入一张图片(不知道是X还是O),比一下对应黑色粗线的值的和与对应绿色粗线的值的和,更大的就代表是这个字母的概率大,okk

神经网络

神经网络呢,就是把上面那几个过程按照想要的顺序进行运算,得到想要的结果
在这里插入图片描述
在这里插入图片描述
就是像上面这样,是不是挺好玩的,哈哈

损失函数(这里过两天来补充)不是偷懒哈哈哈

机器判断的东西嘛,那肯定是有不确定性的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
文中图片引用自视频:
https://www.bilibili.com/video/av16175135?from=search&seid=4423559778929147632

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 卷积神经网络(Convolutional Neural Network, CNN)是一种特别适合处理图像的深度学习模型。它的结构与传统的前馈神经网络类似,由输入层、隐藏层和输出层构成。不同之处在于,CNN在隐藏层中使用了卷积层和池化层。 卷积层的作用是使用卷积核对输入数据进行卷积计算,得到新的特征图。每一个卷积核是一个小的矩阵,可以用来提取图像中的边缘、纹理等特征。 池化层的作用是降低图像的分辨率,并保留重要的特征。常用的池化方法有最大池化和平均池化。 CNN的优势在于能够自动从数据中学习特征,并且在处理图像时能够保持空间和结构信息。因此,它在计算机视觉等领域有着广泛的应用。 ### 回答2: 卷积神经网络是一种深度学习的模型,其设计灵感来自于生物神经系统中视觉皮层的工作原理。它通过学习层级化的特征表示来解决图像识别、语音识别和自然语言处理等任务。 卷积神经网络主要包含三个阶段:卷积层、池化层和全连接层。在输入图像经过卷积层之前,会首先通过一个卷积核对输入图像进行卷积操作,从而提取出图像的不同特征。卷积操作实际上是一种滑动窗口的操作,卷积核会在输入图像上进行滑动,并对窗口内的像素进行加权求和,得到卷积特征图。 卷积层的输出经过池化层进行下采样,主要是为了减少特征维度和计算量,并保留主要的特征信息。常用的池化操作有最大池化和平均池化,它们分别选取窗口内的最大值或平均值作为下采样后的特征。 最后,通过全连接层对池化层输出的特征进行分类或回归操作,得到最终的预测结果。全连接层的每一个神经元与上一层的所有神经元都有连接,然后使用激活函数对结果进行非线性变换。 卷积神经网络的优点在于它能够自动学习图像的空间结构和特征的层级化表示,从而提升了图像识别的准确性。此外,卷积神经网络还具有参数共享的特点,不同位置上的相同特征可以共享同一组参数,大大降低了模型的参数量。 总的来说,卷积神经网络通过卷积操作提取图像特征,通过池化操作减少特征维度,再通过全连接层实现任务的分类或回归。这种模型的设计使其在图像识别等任务上具有出色的表现。 ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要应用于图像识别、计算机视觉等领域。它模拟了人脑对视觉输入的处理过程,通过多层卷积和池化操作对输入的图像进行特征提取和降维。 CNN的核心组成部分是卷积层、激活函数、池化层和全连接层。 卷积层是CNN的基础,采用卷积操作对输入图像进行特征提取。卷积操作使用卷积核对输入图像进行滑动操作,通过局部相连和权重共享的方式提取图像中的局部特征。 激活函数通常用于引入非线性,常见的激活函数有ReLU、Sigmoid和Tanh。激活函数对卷积层输出的特征映射进行非线性变换,增加模型的表示能力。 池化层用于降低特征图的尺寸和参数数量,通常使用最大池化或平均池化操作。池化操作可以减小计算量,同时保留重要的特征。 全连接层将经过特征提取和降维的特征图映射到预测输出。全连接层的神经元与前一层的所有神经元相连,通过学习权重来捕捉图像中的高级特征。 CNN通过反向传播算法进行训练,优化模型参数。训练过程中使用的损失函数通常为交叉熵损失函数,通过最小化损失函数来调整权重和偏差。 总结来说,CNN通过卷积、激活和池化操作进行特征提取和降维,通过全连接层进行预测输出。它在图像处理和计算机视觉任务中取得了广泛的应用,具有较好的识别和分类性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值