描述:
\quad 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有 n + 1 n+1 n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
第一抽屉原理:
原理 1 1 1: 把多于 n n n个 ( n + k ) (n+k) (n+k)的物体放到 n n n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是 n × 1 n×1 n×1个,而不是题设的 n + k ( k ≥ 1 ) n+k(k≥1) n+k(k≥1),故不可能。
原理 2 2 2:把多于 m n mn mn( m ∗ n m*n m∗n) + 1 +1 +1( n n n不为 0 0 0)个的物体放到 n n n个抽屉里,则至少有一个抽屉里有不少于( m + 1 m+1 m+1)的物体。
证明(反证法):若每个抽屉至多放进 m m m个物体,那么 n n n个抽屉至多放进 m n mn mn个物体,与题设不符,故不可能。
原理
3
3
3 :把无穷多件物体放入
n
n
n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理
1
、
2
、
3
1 、2 、3
1、2、3都是第一抽屉原理的表述。这三条都比较好理解
第二抽屉原理:
把多于 n ∗ k n*k n∗k个物体放入 n n n个抽屉中,其中必有一个抽屉中物体有 ( k + 1 ) (k+1) (k+1)个或 ( k + 1 ) (k+1) (k+1)个以上
应用:
ex1:
某校五年级有
32
32
32名学生是在五月份出生,那么其中至少有两名学生的生日是在同一天,为什么?
解法一:五月份有
31
31
31天,看作是
31
31
31个抽屉,
32
32
32名学生看做
32
32
32个苹果,因为苹果数量多于抽屉数量,根据抽屉原理1,至少有一个抽屉有两个或两个以上的苹果,所以至少有两名学生的生日在同一天。
解法二:使用矛盾法。假设结论不成立,那么
5
5
5月的
31
31
31天中,每天过生日的都少于两人,即每天最多
1
1
1人过生日,那么
1
∗
31
=
31
1*31=31
1∗31=31,即
5
5
5月份过生日的人数最多
31
31
31人,这与题目中五月有
32
32
32人过生日产生矛盾,故,至少有两名学生在同一天过生日。
ex2:
在正方形内任意放
5
5
5点,其中必有两点的距离不大于正方形对角线的一半,为什么?
将正方形分成
4
4
4个大小相同的小正方形(看成抽屉),对于正方形内任意放的
5
5
5点(看成苹果),根据抽屉原理可知道,至少有两个点在一个小正方形内,这两点的距离最远时,是两点分别在小正方形的对角顶点上,所以这两点的距离等于或小于小正方形对角线长。因此,必有两点距离不大于正方形对角线的一半。
ex3:
有一只口袋中有红色与黄色球各 4 4 4只,现有4个小朋友,每人可以从口袋中随意去 2 2 2个小球。证明:必须有两个小朋友,他们取出的两个球的颜色完全一样。
本题,可以将两个球的颜色搭配看成是抽屉,则有 红黄,红红,黄黄,那么 4 4 4个小朋友看成是 4 4 4个物品
ex4:
某班图书馆有诗歌、童话、画册三类课外读物,规定每位同学最多可以借阅两种不同类型的书。问,至少有几位同学来借图书,即可断定必有两位同学借阅的书的类型相同?
每位同学最多借阅两种不同的书,那么书的种类搭配可是有 C 2 3 + 3 = 6 C 3 2 + 3 = 6 C_2^3+3=6C_3^2+3=6 C23+3=6C32+3=6种,将其看成是 6 6 6个抽屉,根据抽屉原理至少 7 7 7位同学借书,才能保证必定有两位同学借阅的书类型相同。
ex5:
有一个 3 3 3行 10 10 10列共 ( 3 ∗ 10 ) (3*10) (3∗10)个方格的长方形,把每个小方格图上红色或黄色,每列有多少种涂法?无论怎样涂,至少有两列的涂色方法相同,为什么?
每列有
3
3
3格,每格有
2
2
2种选择,那么每列就是
23
=
823
=
8
23=823=8
23=823=8种涂法。
8
8
8种涂法就是
8
8
8个抽屉,
10
10
10列就是
10
10
10个苹果,那么至少两列涂色方法相同(物品数量>抽屉)
ex6:
从一列数 1 、 5 、 9 、 13 、 。 。 。 、 93 、 97 1、5、9、13、。。。、93、97 1、5、9、13、。。。、93、97中,任取 14 14 14个数,证明:其中必有两个数的和等于 102 102 102
(
97
−
1
)
4
+
1
=
25
\frac{(97-1)}{4}+1=25
4(97−1)+1=25个数
先考虑如何作抽屉,
25
25
25个数可以分
13
13
13组(
13
13
13个抽屉):
{
1
}
,
{
5
,
97
}
,
{
9
,
93
}
,
…
…
.
{
49
,
53
}
\{1\},\{5,97\},\{9,93\},…….\{49,53\}
{1},{5,97},{9,93},…….{49,53}从
25
25
25个数中任取
14
14
14个数,也就是从
13
13
13组中任取
14
14
14个数,必有两个数在同一组中,同一组中的两个数的和必为
102.
102.
102.
ex7:
袋子里有红、黄、黑、白珠子足够多,闭上眼睛要想摸出颜色相同的6粒珠子,至少要摸出几粒珠子,才能保证达到目的?
分析:摸的珠子应多于
4
4
4种颜色的
5
5
5倍
(
k
+
1
=
6
k
=
5
)
(k+1=6 k=5)
(k+1=6k=5)
解一:把
4
4
4种颜色看成
4
4
4个抽屉,袋子里的珠子看作苹果,根据抽屉原理二,取出的珠子数多于
4
∗
5
4*5
4∗5粒,就必有
6
6
6或
6
6
6粒以上的珠子颜色相同。所以至少摸出
21
21
21粒珠子,才能保证有
6
6
6粒珠子颜色相同。
解二:根据极端原理,从最不利的情况考虑,假设每种颜色的珠子都摸了 5 5 5颗,一共摸了 4 ∗ 5 = 20 4*5=20 4∗5=20颗,那么只要再摸 1 1 1颗,不管是什么颜色,都必有 6 6 6颗珠子颜色相同。所以至少摸出 21 21 21粒珠子,才能保证 6 6 6粒珠子颜色相同。