抽屉原理

描述:

\quad 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有 n + 1 n+1 n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。

第一抽屉原理:

原理 1 1 1: 把多于 n n n ( n + k ) (n+k) (n+k)的物体放到 n n n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是 n × 1 n×1 n×1个,而不是题设的 n + k ( k ≥ 1 ) n+k(k≥1) n+k(k1),故不可能。

原理 2 2 2:把多于 m n mn mn( m ∗ n m*n mn) + 1 +1 +1 n n n不为 0 0 0)个的物体放到 n n n个抽屉里,则至少有一个抽屉里有不少于( m + 1 m+1 m+1)的物体。

证明(反证法):若每个抽屉至多放进 m m m个物体,那么 n n n个抽屉至多放进 m n mn mn个物体,与题设不符,故不可能。

原理 3 3 3 :把无穷多件物体放入 n n n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理 1 、 2 、 3 1 、2 、3 123都是第一抽屉原理的表述。这三条都比较好理解

第二抽屉原理:

把多于 n ∗ k n*k nk个物体放入 n n n个抽屉中,其中必有一个抽屉中物体有 ( k + 1 ) (k+1) (k+1)个或 ( k + 1 ) (k+1) (k+1)个以上

应用:

ex1:

某校五年级有 32 32 32名学生是在五月份出生,那么其中至少有两名学生的生日是在同一天,为什么?
解法一:五月份有 31 31 31天,看作是 31 31 31个抽屉, 32 32 32名学生看做 32 32 32个苹果,因为苹果数量多于抽屉数量,根据抽屉原理1,至少有一个抽屉有两个或两个以上的苹果,所以至少有两名学生的生日在同一天。
解法二:使用矛盾法。假设结论不成立,那么 5 5 5月的 31 31 31天中,每天过生日的都少于两人,即每天最多 1 1 1人过生日,那么 1 ∗ 31 = 31 1*31=31 131=31,即 5 5 5月份过生日的人数最多 31 31 31人,这与题目中五月有 32 32 32人过生日产生矛盾,故,至少有两名学生在同一天过生日。

ex2:

在正方形内任意放 5 5 5点,其中必有两点的距离不大于正方形对角线的一半,为什么?
在这里插入图片描述
将正方形分成 4 4 4个大小相同的小正方形(看成抽屉),对于正方形内任意放的 5 5 5点(看成苹果),根据抽屉原理可知道,至少有两个点在一个小正方形内,这两点的距离最远时,是两点分别在小正方形的对角顶点上,所以这两点的距离等于或小于小正方形对角线长。因此,必有两点距离不大于正方形对角线的一半。

ex3:

有一只口袋中有红色与黄色球各 4 4 4只,现有4个小朋友,每人可以从口袋中随意去 2 2 2个小球。证明:必须有两个小朋友,他们取出的两个球的颜色完全一样。

本题,可以将两个球的颜色搭配看成是抽屉,则有 红黄,红红,黄黄,那么 4 4 4个小朋友看成是 4 4 4个物品

ex4:

某班图书馆有诗歌、童话、画册三类课外读物,规定每位同学最多可以借阅两种不同类型的书。问,至少有几位同学来借图书,即可断定必有两位同学借阅的书的类型相同?

每位同学最多借阅两种不同的书,那么书的种类搭配可是有 C 2 3 + 3 = 6 C 3 2 + 3 = 6 C_2^3+3=6C_3^2+3=6 C23+3=6C32+3=6种,将其看成是 6 6 6个抽屉,根据抽屉原理至少 7 7 7位同学借书,才能保证必定有两位同学借阅的书类型相同。

ex5:

有一个 3 3 3 10 10 10列共 ( 3 ∗ 10 ) (3*10) 310个方格的长方形,把每个小方格图上红色或黄色,每列有多少种涂法?无论怎样涂,至少有两列的涂色方法相同,为什么?

每列有 3 3 3格,每格有 2 2 2种选择,那么每列就是 23 = 823 = 8 23=823=8 23=823=8种涂法。
8 8 8种涂法就是 8 8 8个抽屉, 10 10 10列就是 10 10 10个苹果,那么至少两列涂色方法相同(物品数量>抽屉)

ex6:

从一列数 1 、 5 、 9 、 13 、 。 。 。 、 93 、 97 1、5、9、13、。。。、93、97 159139397中,任取 14 14 14个数,证明:其中必有两个数的和等于 102 102 102

( 97 − 1 ) 4 + 1 = 25 \frac{(97-1)}{4}+1=25 4971+1=25个数
先考虑如何作抽屉, 25 25 25个数可以分 13 13 13组( 13 13 13个抽屉): { 1 } , { 5 , 97 } , { 9 , 93 } , … … . { 49 , 53 } \{1\},\{5,97\},\{9,93\},…….\{49,53\} {1},{5,97},{9,93},.{49,53} 25 25 25个数中任取 14 14 14个数,也就是从 13 13 13组中任取 14 14 14个数,必有两个数在同一组中,同一组中的两个数的和必为 102. 102. 102.

ex7:

袋子里有红、黄、黑、白珠子足够多,闭上眼睛要想摸出颜色相同的6粒珠子,至少要摸出几粒珠子,才能保证达到目的?

分析:摸的珠子应多于 4 4 4种颜色的 5 5 5 ( k + 1 = 6 k = 5 ) (k+1=6 k=5) (k+1=6k=5)
解一:把 4 4 4种颜色看成 4 4 4个抽屉,袋子里的珠子看作苹果,根据抽屉原理二,取出的珠子数多于 4 ∗ 5 4*5 45粒,就必有 6 6 6 6 6 6粒以上的珠子颜色相同。所以至少摸出 21 21 21粒珠子,才能保证有 6 6 6粒珠子颜色相同。

解二:根据极端原理,从最不利的情况考虑,假设每种颜色的珠子都摸了 5 5 5颗,一共摸了 4 ∗ 5 = 20 4*5=20 45=20颗,那么只要再摸 1 1 1颗,不管是什么颜色,都必有 6 6 6颗珠子颜色相同。所以至少摸出 21 21 21粒珠子,才能保证 6 6 6粒珠子颜色相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值