多源最短路径+BFS

该博客介绍了一个关于餐饮连锁店送餐优化的问题。栋栋面临着如何以最低成本为分布在网格地图上的客户提供餐品的挑战。每个客户的需求可以由任一分店配送,而送餐费用按距离计算。通过构建一个虚拟超级节点并利用BFS算法,将多个客户的需求合并为单源最短路径问题,从而找到最小总成本。博客中提供了详细的算法实现和代码解释。
摘要由CSDN通过智能技术生成
  1. 最优配餐
    题目
    提交记录
    讨论
    题解
    视频讲解

栋栋最近开了一家餐饮连锁店,提供外卖服务。

随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。

栋栋的连锁店所在的区域可以看成是一个 n×n 的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。

方格图中的线表示可以行走的道路,相邻两个格点的距离为 1。

栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。

送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费 1 块钱。

每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。

现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。

输入格式
输入的第一行包含四个整数 n,m,k,d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。

接下来 m 行,每行两个整数 xi,yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。

接下来 k 行,每行三个整数 xi,yi,ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)

接下来 d 行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。

输出格式
输出一个整数,表示最优送餐方式下所需要花费的成本。

数据范围
前 30% 的评测用例满足:1≤n≤20。
前 60% 的评测用例满足:1≤n≤100。
所有评测用例都满足:1≤n≤1000,1≤m,k,d≤n2,1≤xi,yi≤n。
可能有多个客户在同一个格点上。
每个客户的订餐量不超过 1000,每个客户所需要的餐都能被送到。

输入样例:
10 2 3 3
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
输出样例:
29

题意大概就是每一个顾客的餐由最近的分店配送所花费的最小代价。如果只有一个顾客,就是单源最短路径,我们只需要跑一遍bfs即可。

但是是多个顾客,我们就建立一个虚的超级结点,将问题,合并为一个单源最短路径的问题。然后跑一个bfs即可。
我们是以分店为源头进行扩展,至于第一步入队理应该是超级结点,但是它的代价是0就没必要扩展,我们只需要进行第二步,直接将分店入队,跑bfs即可。

详解看代码

#include<bits/stdc++.h>
#include<iostream>
#include<map>
#include <cstring>
using namespace std;
const int maxn=1010;
typedef long long ll;
typedef pair<int,int> pii;
queue<pii>q;//跑bfs专用队列
int n,m,k,d;
int g[maxn]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值